794 research outputs found
Limit quantum efficiency for violation of Clauser-Horne Inequality for qutrits
In this paper we present the results of numerical calculations about the
minimal value of detection efficiency for violating the Clauser - Horne
inequality for qutrits. Our results show how the use of non-maximally entangled
states largely improves this limit respect to maximally entangled ones. A
stronger resistance to noise is also found.Comment: Phys. Rev. A in pres
A New Lower Bound for Deterministic Truthful Scheduling
We study the problem of truthfully scheduling tasks to selfish
unrelated machines, under the objective of makespan minimization, as was
introduced in the seminal work of Nisan and Ronen [STOC'99]. Closing the
current gap of on the approximation ratio of deterministic truthful
mechanisms is a notorious open problem in the field of algorithmic mechanism
design. We provide the first such improvement in more than a decade, since the
lower bounds of (for ) and (for ) by
Christodoulou et al. [SODA'07] and Koutsoupias and Vidali [MFCS'07],
respectively. More specifically, we show that the currently best lower bound of
can be achieved even for just machines; for we already get
the first improvement, namely ; and allowing the number of machines to
grow arbitrarily large we can get a lower bound of .Comment: 15 page
The Measurement Process in Local Quantum Theory and the EPR Paradox
We describe in a qualitative way a possible picture of the Measurement
Process in Quantum Mechanics, which takes into account: 1. the finite and non
zero time duration T of the interaction between the observed system and the
microscopic part of the measurement apparatus; 2. the finite space size R of
that apparatus; 3. the fact that the macroscopic part of the measurement
apparatus, having the role of amplifying the effect of that interaction to a
macroscopic scale, is composed by a very large but finite number N of
particles. The conventional picture of the measurement, as an instantaneous
action turning a pure state into a mixture, arises only in the limit in which N
and R tend to infinity, and T tends to 0. We sketch here a proposed scheme,
which still ought to be made mathematically precise in order to analyse its
implications and to test it in specific models, where we argue that in Quantum
Field Theory this picture should apply to the unique time evolution expressing
the dynamics of a given theory, and should comply with the Principle of
Locality. We comment on the Einstein Podolski Rosen thought experiment (partly
modifying the discussion on this point in an earlier version of this note),
reformulated here only in terms of local observables (rather than global ones,
as one particle or polarisation observables). The local picture of the
measurement process helps to make it clear that there is no conflict with the
Principle of Locality.Comment: 18 page
A first experimental test of de Broglie-Bohm theory against standard quantum mechanics
De Broglie - Bohm (dBB) theory is a deterministic theory, built for
reproducing almost all Quantum Mechanics (QM) predictions, where position plays
the role of a hidden variable. It was recently shown that different coincidence
patterns are predicted by QM and dBB when a double slit experiment is realised
under specific conditions and, therefore, an experiment can test the two
theories. In this letter we present the first realisation of such a double slit
experiment by using correlated photons produced in type I Parametric Down
Conversion. Our results confirm QM contradicting dBB predictions
Inhibition of Bone Marrow-Derived Mesenchymal Stem Cells Homing Towards Triple-Negative Breast Cancer Microenvironment Using an Anti-PDGFRβ Aptamer
Bone marrow-derived mesenchymal stem cells (BM-MSCs) are shown to participate in tumor progression by establishing a favorable tumor microenvironment (TME) that promote metastasis through a cytokine networks. However, the mechanism of homing and recruitment of BM-MSCs into tumors and their potential role in malignant tissue progression is poorly understood and controversial. Here we show that BM-MSCs increase aggressiveness of triple-negative breast cancer (TNBC) cell lines evaluated as capability to migrate, invade and acquire stemness markers. Importantly, we demonstrate that the treatment of BM-MSCs with a nuclease-resistant RNA aptamer against platelet-derived growth factor receptor β (PDGFRβ) causes the inhibition of receptor-dependent signaling pathways thus drastically hampering BM-MSC recruitment towards TNBC cell lines and BM-MSCs trans-differentiation into carcinoma-associated fibroblast (CAF)-like cells. Moreover, in vivo molecular imaging analysis demonstrated the aptamer ability to prevent BM-MSCs homing to TNBC xenografts. Collectively, our results indicate the anti-PDGFRβ aptamer as a novel therapeutic tool to interfere with BM-MSCs attraction to TNBC providing the rationale to further explore the aptamer in more complex pre-clinical settings
Using simple elastic bands to explain quantum mechanics: a conceptual review of two of Aert's machine-models
From the beginning of his research, the Belgian physicist Diederik Aerts has
shown great creativity in inventing a number of concrete machine-models that
have played an important role in the development of general mathematical and
conceptual formalisms for the description of the physical reality. These models
can also be used to demystify much of the strangeness in the behavior of
quantum entities, by allowing to have a peek at what's going on - in structural
terms - behind the "quantum scenes," during a measurement. In this author's
view, the importance of these machine-models, and of the approaches they have
originated, have been so far seriously underappreciated by the physics
community, despite their success in clarifying many challenges of quantum
physics. To fill this gap, and encourage a greater number of researchers to
take cognizance of the important work of so-called Geneva-Brussels school, we
describe and analyze in this paper two of Aerts' historical machine-models,
whose operations are based on simple breakable elastic bands. The first one,
called the spin quantum-machine, is able to replicate the quantum probabilities
associated with the spin measurement of a spin-1/2 entity. The second one,
called the \emph{connected vessels of water model} (of which we shall present
here an alternative version based on elastics) is able to violate Bell's
inequality, as coincidence measurements on entangled states can do.Comment: 15 pages, 5 figure
GRFS and CRFS in alternative donor hematopoietic cell transplantation for pediatric patients with acute leukemia.
We report graft-versus-host disease (GVHD)-free relapse-free survival (GRFS) (a composite end point of survival without grade III-IV acute GVHD [aGVHD], systemic therapy-requiring chronic GVHD [cGVHD], or relapse) and cGVHD-free relapse-free survival (CRFS) among pediatric patients with acute leukemia (n = 1613) who underwent transplantation with 1 antigen-mismatched (7/8) bone marrow (BM; n = 172) or umbilical cord blood (UCB; n = 1441). Multivariate analysis was performed using Cox proportional hazards models. To account for multiple testing, P \u3c .01 for the donor/graft variable was considered statistically significant. Clinical characteristics were similar between UCB and 7/8 BM recipients, because most had acute lymphoblastic leukemia (62%), 64% received total body irradiation-based conditioning, and 60% received anti-thymocyte globulin or alemtuzumab. Methotrexate-based GVHD prophylaxis was more common with 7/8 BM (79%) than with UCB (15%), in which mycophenolate mofetil was commonly used. The univariate estimates of GRFS and CRFS were 22% (95% confidence interval [CI], 16-29) and 27% (95% CI, 20-34), respectively, with 7/8 BM and 33% (95% CI, 31-36) and 38% (95% CI, 35-40), respectively, with UCB (P \u3c .001). In multivariate analysis, 7/8 BM vs UCB had similar GRFS (hazard ratio [HR], 1.12; 95% CI, 0.87-1.45; P = .39), CRFS (HR, 1.06; 95% CI, 0.82-1.38; P = .66), overall survival (HR, 1.07; 95% CI, 0.80-1.44; P = .66), and relapse (HR, 1.44; 95% CI, 1.03-2.02; P = .03). However, the 7/8 BM group had a significantly higher risk for grade III-IV aGVHD (HR, 1.70; 95% CI, 1.16-2.48; P = .006) compared with the UCB group. UCB and 7/8 BM groups had similar outcomes, as measured by GRFS and CRFS. However, given the higher risk for grade III-IV aGVHD, UCB might be preferred for patients lacking matched donors. © 2019 American Society of Hematology. All rights reserved
A 3-player protocol preventing persistence in strategic contention with limited feedback
In this paper, we study contention resolution protocols from a game-theoretic
perspective. In a recent work, we considered acknowledgment-based protocols,
where a user gets feedback from the channel only when she attempts
transmission. In this case she will learn whether her transmission was
successful or not. One of the main results of ESA2016 was that no
acknowledgment-based protocol can be in equilibrium. In fact, it seems that
many natural acknowledgment-based protocols fail to prevent users from
unilaterally switching to persistent protocols that always transmit with
probability 1. It is therefore natural to ask how powerful a protocol must be
so that it can beat persistent deviators.
In this paper we consider age-based protocols, which can be described by a
sequence of probabilities of transmitting in each time step. Those
probabilities are given beforehand and do not change based on the transmission
history. We present a 3-player age-based protocol that can prevent users from
unilaterally deviating to a persistent protocol in order to decrease their
expected transmission time. It is worth noting that the answer to this question
does not follow from the results and proof ideas of ESA2016. Our protocol is
non-trivial, in the sense that, when all players use it, finite expected
transmission time is guaranteed. In fact, we show that this protocol is
preferable to any deadline protocol in which, after some fixed time, attempt
transmission with probability 1 in every subsequent step. An advantage of our
protocol is that it is very simple to describe, and users only need a counter
to keep track of time. Whether there exist -player age-based protocols that
do not use counters and can prevent persistence is left as an open problem for
future research.Comment: arXiv admin note: substantial text overlap with arXiv:1606.0658
Review of recent experimental progresses in Foundations of Quantum Mechanics and Quantum Information obtained in Parametric Down Conversion Experiments at IENGF
We review some recent experimental progresses concerning Foundations of
Quantum Mechanics and Quantum Information obtained in Quantum Optics Laboratory
"Carlo Novero" at IENGF.
More in details, after a short presentation of our polarization entangled
photons source (based on precise superposition of two Type I PDC emission) and
of the results obtained with it, we describe an innovative double slit
experiment where two degenerate photons produced by PDC are sent each to a
specific slit. Beyond representing an interesting example of relation between
visibility of interference and "welcher weg" knowledge, this configuration has
been suggested for testing de Broglie-Bohm theory against Standard Quantum
Mechanics. Our results perfectly fit SQM results, but disagree with dBB
predictions.
Then, we discuss a recent experiment addressed to clarify the issue of which
wave-particle observables are really to be considered when discussing wave
particle duality. This experiments realises the Agarwal et al. theoretical
proposal, overcoming limitations of a former experiment.
Finally, we hint to the realization of a high-intensity
high-spectral-selected PDC source to be used for quantum information studies
- …
