89 research outputs found

    Re-engineering an alphoid-HAC-based vector to enable high-throughput analyses of gene function

    Get PDF
    Human artificial chromosome (HAC)-based vectors represent an alternative technology for gene delivery and expression with a potential to overcome the problems caused by the use of viral-based vectors. The recently developed alphoid(tetO)-HAC has an advantage over other HAC vectors because it can be easily eliminated from cells by inactivation of the HAC kinetochore via binding of tTS chromatin modifiers to its centromeric tetO sequences. This provides unique control for phenotypes induced by genes loaded into the alphoid(tetO)-HAC. However, inactivation of the HAC kinetochore requires transfection of cells by a retrovirus vector, a step that is potentially mutagenic. Here, we describe an approach to re-engineering the alphoid(tetO)-HAC that allows verification of phenotypic changes attributed to expression of genes from the HAC without a transfection step. In the new HAC vector, a tTS-EYFP cassette is inserted into a gene-loading site along with a gene of interest. Expression of the tTS generates a self-regulating fluctuating heterochromatin on the alphoid(tetO)-HAC that induces fast silencing of the genes on the HAC without significant effects on HAC segregation. This silencing of the HAC-encoded genes can be readily recovered by adding doxycycline. The newly modified alphoid(tetO)-HAC-based system has multiple applications in gene function studies

    De novo formed satellite DNA-based mammalian artificial chromosomes and their possible applications

    Full text link

    Generation of a conditionally self-eliminating HAC gene delivery vector through incorporation of a tTAVP64 expression cassette

    Get PDF
    Human artificial chromosome (HAC)-based vectors represent an alternative technology for gene delivery and expression with a potential to overcome the problems caused by virus-based vectors. The recently developed alphoid(tetO)-HAC has an advantage over other HAC vectors because it can be easily eliminated from cells by inactivation of the HAC kinetochore via binding of chromatin modifiers, tTA or tTS, to its centromeric tetO sequences. This provides a unique control for phenotypes induced by genes loaded into the HAC. The alphoid(tetO)-HAC elimination is highly efficient when a high level of chromatin modifiers as tetR fusion proteins is achieved following transfection of cells by a retrovirus vector. However, such vectors are potentially mutagenic and might want to be avoided under some circumstances. Here, we describe a novel system that allows verification of phenotypic changes attributed to expression of genes from the HAC without a transfection step. We demonstrated that a single copy of tTA(VP64) carrying four tandem repeats of the VP16 domain constitutively expressed from the HAC is capable to generate chromatin changes in the HAC kinetochore that are not compatible with its function. To adopt the alphoid(tetO)-HAC for routine gene function studies, we constructed a new TAR-BRV- tTA(VP64) cloning vector that allows a selective isolation of a gene of interest from genomic DNA in yeast followed by its direct transfer to bacterial cells and subsequent loading into the loxP site of the alphoid(tetO)-HAC in hamster CHO cells from where the HAC may be MMCT-transferred to the recipient human cells

    ALLOCUTION DE CLOTURE

    No full text

    ALLOCUTION DE BIENVENUE

    No full text

    Introduction

    No full text

    Problèmes d'effectifs en pharmacovigilance

    Full text link

    Gene therapy progress and prospects: Episomally maintained self-replicating systems

    No full text

    Gene therapy progress and prospects: episomal-maintained self replicating systems

    No full text
    The use of nonviral gene therapy vectors has been hampered by low level of transfection efficiency and lack of sustained gene expression. Episomal self-replicating sys- tems may overcome these hurdles through their large packaging capacity, stability and reduced toxicity. This article reviews three classes of episomal molecules that have been tested with possible therapeutic genes: (1) self-replicating circular vectors, containing the Epstein–Barr virus (EBV) elements oriP and EBNA1; (2) small circular vectors containing scaffold/matrix attachment regions (S/MARs) as cis-acting elements to maintain the episomal status of the vector; (3) chromosomal vectors, based on the functional elements of the natural chromosomes. The studies reported validate the use of episomal vectors to obtain stable and prolonged gene expression, although reveal some limitations that necessitate additional work
    corecore