5,492 research outputs found

    An electronic healthcare record server implemented in PostgreSQL

    Get PDF
    This paper describes the implementation of an Electronic Healthcare Record server inside a PostgreSQL relational database without dependency on any further middleware infrastructure. The five-part international standard for communicating healthcare records (ISO EN 13606) is used as the information basis for the design of the server. We describe some of the features that this standard demands that are provided by the server, and other areas where assumptions about the durability of communications or the presence of middleware lead to a poor fit. Finally, we discuss the use of the server in two real-world scenarios including a commercial application

    Detection of activating estrogen receptor gene (ESR1) mutations in single circulating tumor cells

    Get PDF
    Purpose: Early detection is essential for treatment plans before onset of metastatic disease. Our purpose was to demonstrate feasibility to detect and monitor estrogen receptor 1 (ESR1) gene mutations at the single circulating tumor cell (CTC) level in metastatic breast cancer (MBC). Experimental Design: We used a CTC molecular characterization approach to investigate heterogeneity of 14 hotspot mutations in ESR1 and their correlation with endocrine resistance. Combining the CellSearch and DEPArray technologies allowed recovery of 71 single CTCs and 12 WBC from 3 ER-positive MBC patients. Forty CTCs and 12 WBC were subjected to whole genome amplification by MALBAC and Sanger sequencing. Results: Among 3 selected patients, 2 had an ESR1 mutation (Y537). One showed two different ESR1 variants in a single CTC and another showed loss of heterozygosity. All mutations were detected in matched cell-free DNA (cfDNA). Furthermore, one had 2 serial blood samples analyzed and showed changes in both cfDNA and CTCs with emergence of mutations in ESR1 (Y537S and T570I), which has not been reported previously. Conclusions: CTCs are easily accessible biomarkers to monitor and better personalize management of patients with previously demonstrated ER-MBC who are progressing on endocrine therapy. We showed that single CTC analysis can yield important information on clonal heterogeneity and can be a source of discovery of novel and potential driver mutations. Finally, we also validate a workflow for liquid biopsy that will facilitate early detection of ESR1 mutations, the emergence of endocrine resistance and the choice of further target therapy. ©2017 AACR

    Systematic design approach for optimized resonantly enhanced Mach-Zehnder modulators

    Get PDF
    A systematic design approach using the developed numerical model for the investigation of any arbitrary electrooptic modulator configuration is described, and its application to the simulation and synthesis of resonantly enhanced Mach-Zehnder modulators (RE-MZMs) is demonstrated. The tool is implemented using equivalent circuit model using transmission lines, lumped elements, and N-port S-parameters. The numerical tool is used to simulate the modulation enhancement factor and radio frequency (RF) return loss of a number of theoretically and experimentally demonstrated examples. Finally, the design tool is used to synthesize a new optimized RE-MZM. This RE-MZM is fabricated and measured, and predicted results are compared

    The diagnostic validity and reliability of an internet-based clinical assessment program for mental disorders

    Full text link
    BACKGROUND: Internet-based assessment has the potential to assist with the diagnosis of mental health disorders and overcome the barriers associated with traditional services (eg, cost, stigma, distance). Further to existing online screening programs available, there is an opportunity to deliver more comprehensive and accurate diagnostic tools to supplement the assessment and treatment of mental health disorders. OBJECTIVE: The aim was to evaluate the diagnostic criterion validity and test-retest reliability of the electronic Psychological Assessment System (e-PASS), an online, self-report, multidisorder, clinical assessment and referral system. METHODS: Participants were 616 adults residing in Australia, recruited online, and representing prospective e-PASS users. Following e-PASS completion, 158 participants underwent a telephone-administered structured clinical interview and 39 participants repeated the e-PASS within 25 days of initial completion. RESULTS: With structured clinical interview results serving as the gold standard, diagnostic agreement with the e-PASS varied considerably from fair (eg, generalized anxiety disorder: &kappa;=.37) to strong (eg, panic disorder: &kappa;=.62). Although the e-PASS\u27 sensitivity also varied (0.43-0.86) the specificity was generally high (0.68-1.00). The e-PASS sensitivity generally improved when reducing the e-PASS threshold to a subclinical result. Test-retest reliability ranged from moderate (eg, specific phobia: &kappa;=.54) to substantial (eg, bulimia nervosa: &kappa;=.87). CONCLUSIONS: The e-PASS produces reliable diagnostic results and performs generally well in excluding mental disorders, although at the expense of sensitivity. For screening purposes, the e-PASS subclinical result generally appears better than a clinical result as a diagnostic indicator. Further development and evaluation is needed to support the use of online diagnostic assessment programs for mental disorders. <br /

    Analysis of a novel mutant allele of GSL8 reveals its key roles in cytokinesis and symplastic trafficking in Arabidopsis

    Get PDF
    Abstract Background Plant cell walls are mainly composed of polysaccharides such as cellulose and callose. Callose exists at a very low level in the cell wall; however, it plays critical roles at different stages of plant development as well as in defence against unfavorable conditions. Callose is accumulated at the cell plate, at plasmodesmata and in male and female gametophytes. Despite the important roles of callose in plants, the mechanisms of its synthesis and regulatory properties are not well understood. Results CALLOSE SYNTHASE (CALS) genes, also known as GLUCAN SYNTHASE-LIKE (GSL), comprise a family of 12 members in Arabidopsis thaliana. Here, we describe a new allele of GSL8 (named essp8) that exhibits pleiotropic seedling defects. Reduction of callose deposition at the cell plates and plasmodesmata in essp8 leads to ectopic endomitosis and an increase in the size exclusion limit of plasmodesmata during early seedling development. Movement of two non-cell-autonomous factors, SHORT ROOT and microRNA165/6, both required for root radial patterning during embryonic root development, are dysregulated in the primary root of essp8. This observation provides evidence for a molecular mechanism explaining the gsl8 root phenotype. We demonstrated that GSL8 interacts with PLASMODESMATA-LOCALIZED PROTEIN 5, a β-1,3-glucanase, and GSL10. We propose that they all might be part of a putative callose synthase complex, allowing a concerted regulation of callose deposition at plasmodesmata. Conclusion Analysis of a novel mutant allele of GSL8 reveals that GSL8 is a key player in early seedling development in Arabidopsis. GSL8 is required for maintaining the basic ploidy level and regulating the symplastic trafficking. Callose deposition at plasmodesmata is highly regulated and occurs through interaction of different components, likely to be incorporated into a callose biosynthesis complex. We are providing new evidence supporting an earlier hypothesis that GSL8 might have regulatory roles apart from its enzymatic function in plasmodesmata regulation

    Hausdorff dimension of critical fluctuations in abelian gauge theories

    Full text link
    The geometric properties of the critical fluctuations in abelian gauge theories such as the Ginzburg-Landau model are analyzed in zero background field. Using a dual description, we obtain scaling relations between exponents of geometric and thermodynamic nature. In particular we connect the anomalous scaling dimension η\eta of the dual matter field to the Hausdorff dimension DHD_H of the critical fluctuations, {\it which are fractal objects}. The connection between the values of η\eta and DHD_H, and the possibility of having a thermodynamic transition in finite background field, is discussed.Comment: Accepted for publication in PR

    Application and assessment of peptide-MHC binding affinity prediction

    Get PDF
    Infectious diseases have historically been the leading cause of death worldwide. While cardiovascular disease has slowly overtaken infectious diseases as the leading cause of death over the last 100 years, infectious diseases continue to have a huge burden on our planet, costing millions of life years and trillions of dollars as evidenced by our most recent COVID-19 pandemic. Viral infections like SARS-CoV-2, can be detected and eliminated through the MHC class I antigen presentation pathway. Identifying which viral targets can be recognized by each person's individual immune system is critical, both for evaluating whether current treatments can work, and for developing future vaccines. In my dissertation, I developed a framework to predict and assess susceptibility to infectious disease via peptide-MHC binding

    A 2-terminal perovskite/silicon multijunction solar cell enabled by a silicon tunnel junction

    Get PDF
    With the advent of efficient high-bandgap metal-halide perovskite photovoltaics, an opportunity exists to make perovskite/silicon tandem solar cells. We fabricate a monolithic tandem by developing a silicon-based interband tunnel junction that facilitates majority-carrier charge recombination between the perovskite and silicon sub-cells. We demonstrate a 1 cm[superscript 2] 2-terminal monolithic perovskite/silicon multijunction solar cell with a V [subscript OC] as high as 1.65 V. We achieve a stable 13.7% power conversion efficiency with the perovskite as the current-limiting sub-cell, and identify key challenges for this device architecture to reach efficiencies over 25%.Bay Area Photovoltaic Consortium (Contract DE-EE0004946)United States. Dept. of Energy (Contract DE-EE0006707

    Analysis of a novel mutant allele of GSL8 reveals its key roles in cytokinesis and symplastic trafficking in Arabidopsis

    Get PDF
    Abstract Background Plant cell walls are mainly composed of polysaccharides such as cellulose and callose. Callose exists at a very low level in the cell wall; however, it plays critical roles at different stages of plant development as well as in defence against unfavorable conditions. Callose is accumulated at the cell plate, at plasmodesmata and in male and female gametophytes. Despite the important roles of callose in plants, the mechanisms of its synthesis and regulatory properties are not well understood. Results CALLOSE SYNTHASE (CALS) genes, also known as GLUCAN SYNTHASE-LIKE (GSL), comprise a family of 12 members in Arabidopsis thaliana. Here, we describe a new allele of GSL8 (named essp8) that exhibits pleiotropic seedling defects. Reduction of callose deposition at the cell plates and plasmodesmata in essp8 leads to ectopic endomitosis and an increase in the size exclusion limit of plasmodesmata during early seedling development. Movement of two non-cell-autonomous factors, SHORT ROOT and microRNA165/6, both required for root radial patterning during embryonic root development, are dysregulated in the primary root of essp8. This observation provides evidence for a molecular mechanism explaining the gsl8 root phenotype. We demonstrated that GSL8 interacts with PLASMODESMATA-LOCALIZED PROTEIN 5, a β-1,3-glucanase, and GSL10. We propose that they all might be part of a putative callose synthase complex, allowing a concerted regulation of callose deposition at plasmodesmata. Conclusion Analysis of a novel mutant allele of GSL8 reveals that GSL8 is a key player in early seedling development in Arabidopsis. GSL8 is required for maintaining the basic ploidy level and regulating the symplastic trafficking. Callose deposition at plasmodesmata is highly regulated and occurs through interaction of different components, likely to be incorporated into a callose biosynthesis complex. We are providing new evidence supporting an earlier hypothesis that GSL8 might have regulatory roles apart from its enzymatic function in plasmodesmata regulation
    corecore