268 research outputs found

    Charge migration in organic materials: Can propagating charges affect the key physical quantities controlling their motion?

    Full text link
    Charge migration is a ubiquitous phenomenon with profound implications throughout many areas of chemistry, physics, biology and materials science. The long-term vision of designing functional materials with tailored molecular scale properties has triggered an increasing quest to identify prototypical systems where truly molecular conduction pathways play a fundamental role. Such pathways can be formed due to the molecular organization of various organic materials and are widely used to discuss electronic properties at the nanometer scale. Here, we present a computational methodology to study charge propagation in organic molecular stacks at nano and sub-nanoscales and exploit this methodology to demonstrate that moving charge carriers strongly affect the values of the physical quantities controlling their motion. The approach is also expected to find broad application in the field of charge migration in soft matter systems.Comment: 18 pages, 6 figures, accepted for publication in the Israel Journal of Chemistr

    Control of quantum interference in molecular junctions: Understanding the origin of Fano and anti- resonances

    Full text link
    We investigate within a coarse-grained model the conditions leading to the appearance of Fano resonances or anti-resonances in the conductance spectrum of a generic molecular junction with a side group (T-junction). By introducing a simple graphical representation (parabolic diagram), we can easily visualize the relation between the different electronic parameters determining the regimes where Fano resonances or anti-resonances in the low-energy conductance spectrum can be expected. The results obtained within the coarse-grained model are validated using density-functional based quantum transport calculations in realistic T-shaped molecular junctions.Comment: 5 pages, 5 figure

    Topological Signatures in the Electronic Structure of Graphene Spirals

    Get PDF
    Topology is familiar mostly from mathematics, but also natural sciences have found its concepts useful. Those concepts have been used to explain several natural phenomena in biology and physics, and they are particularly relevant for the electronic structure description of topological insulators and graphene systems. Here, we introduce topologically distinct graphene forms - graphene spirals - and employ density-functional theory to investigate their geometric and electronic properties. We found that the spiral topology gives rise to an intrinsic Rashba spin-orbit splitting. Through a Hamiltonian constrained by space curvature, graphene spirals have topologically protected states due to time-reversal symmetry. In addition, we argue that the synthesis of such graphene spirals is feasible and can be achieved through advanced bottom-up experimental routes that we indicate in this work

    Nanoscale X-ray investigation of magnetic metallofullerene peapods

    Full text link
    Endohedral lanthanide ions packed inside carbon nanotubes (CNTs) in a one-dimensional assembly have been studied with a combination of high resolution transmission electron microscopy (HRTEM), scanning transmission X-ray microscopy (STXM), and X-ray magnetic circular dichroism (XMCD). By correlating HRTEM and STXM images we show that structures down to 30 nm are resolved with chemical contrast and record X-ray absorption spectra from endohedral lanthanide ions embedded in individual nanoscale CNT bundles. XMCD measurements of an Er3_3N@C80_{80} bulk sample and a macroscopic assembly of filled CNTs indicates that the magnetic properties of the endohedral Er3+ ions are unchanged when encapsulated in CNTs. This study demonstrates the feasibility of local magnetic X-ray characterization of low concentrations of lanthanide ions embedded in molecular nanostructures

    Nanoscale ear drum: Graphene based nanoscale sensors

    Full text link
    The difficulty in determining the mass of a sample increases as its size diminishes. At the nanoscale, there are no direct methods for resolving the mass of single molecules or nanoparticles and so more sophisticated approaches based on electromechanical phenomena are required. More importantly, one demands that such nanoelectromechanical techniques could provide not only information about the mass of the target molecules but also about their geometrical properties. In this sense, we report a theoretical study that illustrates in detail how graphene membranes can operate as nanoelectromechanical mass-sensor devices. Wide graphene sheets were exposed to different types and amounts of molecules and molecular dynamic simulations were employed to treat these doping processes statistically. We demonstrate that the mass variation effect and information about the graphene-molecule interactions can be inferred through dynamical response functions. Our results confirm the potential use of graphene as mass detector devices with remarkable precision in estimating variations in mass at molecular scale and other physical properties of the dopants

    ВИКОРИСТАННЯ ІННОВАЦІЙНИХ ТЕХНОЛОГІЙ У ВИКЛАДАННІ ЛЕКЦІЙНОГО МАТЕРІАЛУ В МЕДИЧНИХ СЕСТЕР

    Get PDF
    The issue of the day of today’s education of skilled nurses able to think and make decision. In the article the conception of the use of innovative technologies of studies is expounded, as the means of forming of all-round well-educated professionals.Актуальною проблемою сьогоднішньої освіти є підготовка кваліфікованих медичних сестер, здатних мислити та приймати рішення. У статті викладено концепцію використання інноваційних технологій навчання як засобу формування всебічно освідчених професіоналів

    ВИКОРИСТАННЯ ВІДЕОМАТЕРІАЛІВ ПІДЧАС ВИКЛАДАННЯ ЛЕКЦІЙНОГО МАТЕРІАЛУ

    Get PDF
    The article contains the basic principles of teaching lectures, questions to the use of video as the principle of activation and the best mastering of material by students.У статті містяться основні принципи викладання лекційного матеріалу. Питання щодо використання відеоматеріалів як принципу активізації та кращого засвоєння матеріалу студентами
    corecore