203 research outputs found

    The effect of Coulomb interaction at ferromagnetic-paramagnetic metallic perovskite junctions

    Full text link
    We study the effect of Coulomb interactions in transition metal oxides junctions. In this paper we analyze charge transfer at the interface of a three layer ferromagnetic-paramagnetic-ferromagnetic metallic oxide system. We choose a charge model considering a few atomic planes within each layer and obtain results for the magnetic coupling between the ferromagnetic layers. For large number of planes in the paramagnetic spacer we find that the coupling oscillates with the same period as in RKKY but the amplitude is sensitive to the Coulomb energy. At small spacer thickness however, large differences may appear as function of : the number of electrons per atom in the ferromagnetics and paramagnetics materials, the dielectric constant at each component, and the charge defects at the interface plane emphasizing the effects of charge transfer.Comment: tex file and 7 figure

    Effect of Electron Correlation on the Bragg Reflection

    Full text link
    We study the effect of correlation on the Bragg reflection in the 3D electron gas, the 1D Luttinger liquid, and the 1D Hubbard model in an alternating periodic potential at half-filling. In the last system, we suggest a Luttinger-liquid-type quasi-metallic state in the crossover region from the band insulator to the Mott insulator. We explain the appearance of this state in terms of the incompatibility of the Bragg reflection with the concept of Luttinger liquids.Comment: 4 pages, 3 figure

    Electron-Doped Manganese Perovskites: The Polaronic State

    Full text link
    Using the Lanczos method in linear chains we study the ground state of the double exchange model including an antiferromagnetic super-exchange in the low concentration limit. We find that this ground state is always inhomogeneous, containig ferromagnetic polarons. The extention of the polaron spin distortion, the dispersion relation and their trapping by impurities, are studied for diferent values of the super exchange interaction and magnetic field. We also find repulsive polaron polaron interaction.Comment: 4 pages, 6 embedded figure

    Influence of Hybridization on the Properties of the Spinless Falicov-Kimball Model

    Full text link
    Without a hybridization between the localized f- and the conduction (c-) electron states the spinless Falicov-Kimball model (FKM) is exactly solvable in the limit of high spatial dimension, as first shown by Brandt and Mielsch. Here I show that at least for sufficiently small c-f-interaction this exact inhomogeneous ground state is also obtained in Hartree-Fock approximation. With hybridization the model is no longer exactly solvable, but the approximation yields that the inhomogeneous charge-density wave (CDW) ground state remains stable also for finite hybridization V smaller than a critical hybridization V_c, above which no inhomogeneous CDW solution but only a homogeneous solution is obtained. The spinless FKM does not allow for a ''ferroelectric'' ground state with a spontaneous polarization, i.e. there is no nonvanishing -expectation value in the limit of vanishing hybridization.Comment: 7 pages, 6 figure

    Phase diagram and optical conductivity of the one-dimensional spinless Holstein model

    Full text link
    The effects of quantum lattice fluctuations on the Peierls transition and the optical conductivity in the one-dimensional Holstein model of spinless fermions have been studied by developing an analytical approach, based on the unitary transformation method. We show that when the electron-phonon coupling constant decreases to a finite critical value the Peierls dimerization is destroyed by the quantum lattice fluctuations. The dimerization gap is much more reduced by the quantum lattice fluctuations than the phonon order parameter. The calculated optical conductivity does not have the inverse-square-root singularity but have a peak above the gap edge and there exists a significant tail below the peak. The peak of optical-conductivity spectrum is not directly corresponding to the dimerized gap. Our results of the phase diagram and the spectral-weight function agree with those of the density matrix renormalization group and the exact diagonalization methods.Comment: 9 pages, 4 figures include

    Excitation Spectrum of One-dimensional Extended Ionic Hubbard Model

    Full text link
    We use Perturbative Continuous Unitary Transformations (PCUT) to study the one dimensional Extended Ionic Hubbard Model (EIHM) at half-filling in the band insulator region. The extended ionic Hubbard model, in addition to the usual ionic Hubbard model, includes an inter-site nearest-neighbor (n.n.) repulsion, VV. We consider the ionic potential as unperturbed part of the Hamiltonian, while the hopping and interaction (quartic) terms are treated as perturbation. We calculate total energy and ionicity in the ground state. Above the ground state, (i) we calculate the single particle excitation spectrum by adding an electron or a hole to the system. (ii) the coherence-length and spectrum of electron-hole excitation are obtained. Our calculations reveal that for V=0, there are two triplet bound state modes and three singlet modes, two anti-bound states and one bound state, while for finite values of VV there are four excitonic bound states corresponding to two singlet and two triplet modes. The major role of on-site Coulomb repulsion UU is to split singlet and triplet collective excitation branches, while VV tends to pull the singlet branches below the continuum to make them bound states.Comment: 10 eps figure

    Charge and spin inhomogeneous phases in the Ferromagnetic Kondo Lattice Model

    Full text link
    We study numerically the one-dimensional ferromagnetic Kondo lattice. This model is widely used to describe nickel and manganese perovskites. Due to the competition between double and super-exchange, we find a region where the formation of magnetic polarons induces a charge-ordered state. This ordering is present even in the absence of any inter-site Coulomb repulsion. There is an insulating gap associated to the charge structure formation. We also study the insulator-metal transition induced by a magnetic field which removes simultaneously both charge and spin ordering.Comment: 7 pages, 11 figure

    Transition from band insulator to Mott insulator in one dimension: Critical behavior and phase diagram

    Full text link
    We report a systematic study of the transition from a band insulator (BI) to a Mott insulator (MI) in a one-dimensional Hubbard model at half-filling with an on-site Coulomb interaction U and an alternating periodic site potential V. We employ both the zero-temperature density matrix renormalization group (DMRG) method to determine the gap and critical behavior of the system and the finite-temperature transfer matrix renormalization group method to evaluate the thermodynamic properties. We find two critical points at U = UcU_c and U = UsU_s that separate the BI and MI phases for a given V. A charge-neutral spin-singlet exciton band develops in the BI phase (U<UcU_c) and drops below the band gap when U exceeds a special point Ue. The exciton gap closes at the first critical point UcU_c while the charge and spin gaps persist and coincide between UcU_c<U<UsU_s where the system is dimerized. Both the charge and spin gaps collapse at U = UsU_s when the transition to the MI phase occurs. In the MI phase (U>UsU_s) the charge gap increases almost linearly with U while the spin gap remains zero. These findings clarify earlier published results on the same model, and offer insights into several important issues regarding an appropriate scaling analysis of DMRG data and a full physical picture of the delicate nature of the phase transitions driven by electron correlation. The present work provides a comprehensive understanding for the critical behavior and phase diagram for the transition from BI to MI in one-dimensional correlated electron systems with a periodic alternating site potential.Comment: long version, 10 figure

    BUILDING BRIDGES FOR INNOVATION IN AGEING : SYNERGIES BETWEEN ACTION GROUPS OF THE EIP ON AHA

    Get PDF
    The Strategic Implementation Plan of the European Innovation Partnership on Active and Healthy Ageing (EIP on AHA) proposed six Action Groups. After almost three years of activity, many achievements have been obtained through commitments or collaborative work of the Action Groups. However, they have often worked in silos and, consequently, synergies between Action Groups have been proposed to strengthen the triple win of the EIP on AHA. The paper presents the methodology and current status of the Task Force on EIP on AHA synergies. Synergies are in line with the Action Groups' new Renovated Action Plan (2016-2018) to ensure that their future objectives are coherent and fully connected. The outcomes and impact of synergies are using the Monitoring and Assessment Framework for the EIP on AHA (MAFEIP). Eight proposals for synergies have been approved by the Task Force: Five cross-cutting synergies which can be used for all current and future synergies as they consider overarching domains (appropriate polypharmacy, citizen empowerment, teaching and coaching on AHA, deployment of synergies to EU regions, Responsible Research and Innovation), and three cross-cutting synergies focussing on current Action Group activities (falls, frailty, integrated care and chronic respiratory diseases).Peer reviewe

    ÉTUDE EXPÉRIMENTALE ET THÉORIQUE DES NOYAUX DE TRANSITION 68,70,72,74Ge

    Get PDF
    Les isotopes de 68,70,72,74Ge ont été étudiés avec une haute résolution en énergie au moyen de la réaction (p, t). Un grand nombre de nouveaux niveaux 0+, 2+ et 4+ à basse énergie ont été mis en évidence. Des calculs semi-microscopiques de surfaces d'énergie potentielle et de spectres ont été effectués et des conclusions sont données sur la structure des noyaux Ge
    corecore