1,684 research outputs found
A note on uniform power connectivity in the SINR model
In this paper we study the connectivity problem for wireless networks under
the Signal to Interference plus Noise Ratio (SINR) model. Given a set of radio
transmitters distributed in some area, we seek to build a directed strongly
connected communication graph, and compute an edge coloring of this graph such
that the transmitter-receiver pairs in each color class can communicate
simultaneously. Depending on the interference model, more or less colors,
corresponding to the number of frequencies or time slots, are necessary. We
consider the SINR model that compares the received power of a signal at a
receiver to the sum of the strength of other signals plus ambient noise . The
strength of a signal is assumed to fade polynomially with the distance from the
sender, depending on the so-called path-loss exponent .
We show that, when all transmitters use the same power, the number of colors
needed is constant in one-dimensional grids if as well as in
two-dimensional grids if . For smaller path-loss exponents and
two-dimensional grids we prove upper and lower bounds in the order of
and for and
for respectively. If nodes are distributed
uniformly at random on the interval , a \emph{regular} coloring of
colors guarantees connectivity, while colors are required for any coloring.Comment: 13 page
Brief Announcement: On Self-Adjusting Skip List Networks
This paper explores the design of dynamic network topologies which adjust to the workload they serve, in an online manner. Such self-adjusting networks (SANs) are enabled by emerging optical technologies, and can be found, e.g., in datacenters. SANs can be used to reduce routing costs by moving frequently communicating nodes topologically closer. This paper presents SANs which provide, for the first time, provable working set guarantees: the routing cost between node pairs is proportional to how recently these nodes communicated last time. Our SANs rely on skip lists (which serve as the topology) and provide additional interesting properties such as local routing
Dynamic Balanced Graph Partitioning
This paper initiates the study of the classic balanced graph partitioning
problem from an online perspective: Given an arbitrary sequence of pairwise
communication requests between nodes, with patterns that may change over
time, the objective is to service these requests efficiently by partitioning
the nodes into clusters, each of size , such that frequently
communicating nodes are located in the same cluster. The partitioning can be
updated dynamically by migrating nodes between clusters. The goal is to devise
online algorithms which jointly minimize the amount of inter-cluster
communication and migration cost.
The problem features interesting connections to other well-known online
problems. For example, scenarios with generalize online paging, and
scenarios with constitute a novel online variant of maximum matching. We
present several lower bounds and algorithms for settings both with and without
cluster-size augmentation. In particular, we prove that any deterministic
online algorithm has a competitive ratio of at least , even with significant
augmentation. Our main algorithmic contributions are an -competitive deterministic algorithm for the general setting with
constant augmentation, and a constant competitive algorithm for the maximum
matching variant
Survival mediation analysis with the death-truncated mediator: The completeness of the survival mediation parameter
In medical research, the development of mediation analysis with a survival outcome has facilitated investigation into causal mechanisms. However, studies have not discussed the death-truncation problem for mediators, the problem being that conventional mediation parameters cannot be well-defined in the presence of a truncated mediator. In the present study, we systematically defined the completeness of causal effects to uncover the gap, in conventional causal definitions, between the survival and nonsurvival settings. We proposed three approaches to redefining the natural direct and indirect effects, which are generalized forms of the conventional causal effects for survival outcomes. Furthermore, we developed three statistical methods for the binary outcome of the survival status and formulated a Cox model for survival time. We performed simulations to demonstrate that the proposed methods are unbiased and robust. We also applied the proposed method to explore the effect of hepatitis C virus infection on mortality, as mediated through hepatitis B viral load
- …
