1,684 research outputs found

    A note on uniform power connectivity in the SINR model

    Full text link
    In this paper we study the connectivity problem for wireless networks under the Signal to Interference plus Noise Ratio (SINR) model. Given a set of radio transmitters distributed in some area, we seek to build a directed strongly connected communication graph, and compute an edge coloring of this graph such that the transmitter-receiver pairs in each color class can communicate simultaneously. Depending on the interference model, more or less colors, corresponding to the number of frequencies or time slots, are necessary. We consider the SINR model that compares the received power of a signal at a receiver to the sum of the strength of other signals plus ambient noise . The strength of a signal is assumed to fade polynomially with the distance from the sender, depending on the so-called path-loss exponent α\alpha. We show that, when all transmitters use the same power, the number of colors needed is constant in one-dimensional grids if α>1\alpha>1 as well as in two-dimensional grids if α>2\alpha>2. For smaller path-loss exponents and two-dimensional grids we prove upper and lower bounds in the order of O(logn)\mathcal{O}(\log n) and Ω(logn/loglogn)\Omega(\log n/\log\log n) for α=2\alpha=2 and Θ(n2/α1)\Theta(n^{2/\alpha-1}) for α<2\alpha<2 respectively. If nodes are distributed uniformly at random on the interval [0,1][0,1], a \emph{regular} coloring of O(logn)\mathcal{O}(\log n) colors guarantees connectivity, while Ω(loglogn)\Omega(\log \log n) colors are required for any coloring.Comment: 13 page

    Brief Announcement: On Self-Adjusting Skip List Networks

    Get PDF
    This paper explores the design of dynamic network topologies which adjust to the workload they serve, in an online manner. Such self-adjusting networks (SANs) are enabled by emerging optical technologies, and can be found, e.g., in datacenters. SANs can be used to reduce routing costs by moving frequently communicating nodes topologically closer. This paper presents SANs which provide, for the first time, provable working set guarantees: the routing cost between node pairs is proportional to how recently these nodes communicated last time. Our SANs rely on skip lists (which serve as the topology) and provide additional interesting properties such as local routing

    Dynamic Balanced Graph Partitioning

    Full text link
    This paper initiates the study of the classic balanced graph partitioning problem from an online perspective: Given an arbitrary sequence of pairwise communication requests between nn nodes, with patterns that may change over time, the objective is to service these requests efficiently by partitioning the nodes into \ell clusters, each of size kk, such that frequently communicating nodes are located in the same cluster. The partitioning can be updated dynamically by migrating nodes between clusters. The goal is to devise online algorithms which jointly minimize the amount of inter-cluster communication and migration cost. The problem features interesting connections to other well-known online problems. For example, scenarios with =2\ell=2 generalize online paging, and scenarios with k=2k=2 constitute a novel online variant of maximum matching. We present several lower bounds and algorithms for settings both with and without cluster-size augmentation. In particular, we prove that any deterministic online algorithm has a competitive ratio of at least kk, even with significant augmentation. Our main algorithmic contributions are an O(klogk)O(k \log{k})-competitive deterministic algorithm for the general setting with constant augmentation, and a constant competitive algorithm for the maximum matching variant

    Survival mediation analysis with the death-truncated mediator: The completeness of the survival mediation parameter

    Get PDF
    In medical research, the development of mediation analysis with a survival outcome has facilitated investigation into causal mechanisms. However, studies have not discussed the death-truncation problem for mediators, the problem being that conventional mediation parameters cannot be well-defined in the presence of a truncated mediator. In the present study, we systematically defined the completeness of causal effects to uncover the gap, in conventional causal definitions, between the survival and nonsurvival settings. We proposed three approaches to redefining the natural direct and indirect effects, which are generalized forms of the conventional causal effects for survival outcomes. Furthermore, we developed three statistical methods for the binary outcome of the survival status and formulated a Cox model for survival time. We performed simulations to demonstrate that the proposed methods are unbiased and robust. We also applied the proposed method to explore the effect of hepatitis C virus infection on mortality, as mediated through hepatitis B viral load
    corecore