6,374 research outputs found

    Identification of Birds through DNA Barcodes

    Get PDF
    Short DNA sequences from a standardized region of the genome provide a DNA barcode for identifying species. Compiling a public library of DNA barcodes linked to named specimens could provide a new master key for identifying species, one whose power will rise with increased taxon coverage and with faster, cheaper sequencing. Recent work suggests that sequence diversity in a 648-bp region of the mitochondrial gene, cytochrome c oxidase I (COI), might serve as a DNA barcode for the identification of animal species. This study tested the effectiveness of a COI barcode in discriminating bird species, one of the largest and best-studied vertebrate groups. We determined COI barcodes for 260 species of North American birds and found that distinguishing species was generally straightforward. All species had a different COI barcode(s), and the differences between closely related species were, on average, 18 times higher than the differences within species. Our results identified four probable new species of North American birds, suggesting that a global survey will lead to the recognition of many additional bird species. The finding of large COI sequence differences between, as compared to small differences within, species confirms the effectiveness of COI barcodes for the identification of bird species. This result plus those from other groups of animals imply that a standard screening threshold of sequence difference (10× average intraspecific difference) could speed the discovery of new animal species. The growing evidence for the effectiveness of DNA barcodes as a basis for species identification supports an international exercise that has recently begun to assemble a comprehensive library of COI sequences linked to named specimens

    Catadromous eels continue to be slippery research subjects.

    Get PDF
    As adults, Atlantic eels (Anguilla rostrata in the Americas and Anguilla anguilla in Europe) are tubular slime-covered fish that spend most of their catadromous life-cycle in coastal environs before swimming far out to sea to reproduce, as part of an intergenerational migratory circuit that provides an interesting reversal of the pattern displayed by adult anadromous salmon that live mostly in the ocean but then migrate long distances to spawn in freshwater streams. Earlier genetic findings on Atlantic eels involved specimens collected across their broad continental ranges and generally indicated that conspecifics probably engage in panmictic or quasi-panmictic spawning,from which arise leaf-shaped leptocephaus larvae that then disperse back to coastal locations more or less at random with respect to the widespread geographical origins of the parental genes they carry. In this issue, Alset al. (2011) add exciting information about this peculiar life-history pattern of catadromous Atlantic eels by extending the genetic analyses to eel larvae collected from the Sargasso Sea, the oceanic area where both species spawn. Results help to confirm standard textbook wisdom that these catadromous eels are nearly unique in the biological world by having both broad geographical distributions and yet displaying intraspecific near panmixia

    Colloquium paper: three ambitious (and rather unorthodox) assignments for the field of biodiversity genetics.

    Get PDF
    The field of molecular genetics has many roles in biodiversity assessment and conservation. I summarize three of those standard roles and propose logical extensions of each. First, many biologists suppose that a comprehensive picture of the Tree of Life will soon emerge from multilocus DNA sequence data interpreted in concert with fossils and other evidence. If nonreticulate trees are indeed valid metaphors for life's history, then a well dated global phylogeny will offer an opportunity to erect a universally standardized scheme of biological classification. If life's history proves to be somewhat reticulate, a web-like phylogenetic pattern should become evident and will offer opportunities to reevaluate the fundamental nature of evolutionary processes. Second, extensive networks of wildlife sanctuaries offer some hope for shepherding appreciable biodiversity through the ongoing extinction crisis, and molecular genetics can assist in park design by helping to identify key species, historically important biotic areas, and biodiversity hotspots. An opportunity centers on the concept of Pleistocene Parks that could protect "legacy biotas" in much the same way that traditional national parks preserve special geological features and historical landmarks honor legacy events in human affairs. Third, genetic perspectives have become an integral part of many focused conservation efforts by unveiling ecological, behavioral, or evolutionary phenomena relevant to population management. They also can open opportunities to educate the public about the many intellectual gifts and aesthetic marvels of the natural world

    Evolutionary diversity and turn-over of sex determination in teleost fishes.

    Get PDF
    Sex determination, due to the obvious association with reproduction and Darwinian fitness, has been traditionally assumed to be a relatively conserved trait. However, research on teleost fishes has shown that this need not be the case, as these animals display a remarkable diversity in the ways that they determine sex. These different mechanisms, which include constitutive genetic mechanisms on sex chromosomes, polygenic constitutive mechanisms, environmental influences, hermaphroditism, and unisexuality have each originated numerous independent times in the teleosts. The evolutionary lability of sex determination, and the corresponding rapid rate of turn-over among different modes, makes the teleost clade an excellent model with which to test theories regarding the evolution of sex determining adaptations. Much of the plasticity in sex determination likely results from the dynamic teleost genome, and recent advances in fish genetics and genomics have revealed the role of gene and genome duplication in fostering emergence and turn-over of sex determining mechanisms
    corecore