31 research outputs found

    Nonattendance in pediatric pulmonary clinics: an ambulatory survey

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Nonattendance for scheduled appointments disturbs the effective management of pediatric pulmonary clinics. We hypothesized that the reasons for non-attendance and the necessary solutions might be different in pediatric pulmonary medicine than in other pediatric fields. We therefore investigated the factors associated with nonattendance this field in order to devise a corrective strategy.</p> <p>Methods</p> <p>The effect of age, gender, ethnic origin, waiting time for an appointment and the timing of appointments during the day on nonattendance proportion were assessed. Chi-square tests were used to analyze statistically significant differences of categorical variables. Logistic regression models were used for multivariate analysis.</p> <p>Results</p> <p>A total of 1190 pediatric pulmonology clinic visits in a 21 month period were included in the study. The overall proportion of nonattendance was 30.6%. Nonattendance was 23.8% when there was a short waiting time for an appointment (1–7 days) and 36.3% when there was a long waiting time (8 days and above) (p-value < 0.001). Nonattendance was 28.7% between 8 a.m. to 3 p.m. and 37.5% after 3 p.m. (p = 0.007). Jewish rural patients had 15.4% nonattendance, Jewish urban patients had 31.2% nonattendance and Bedouin patients had 32.9% nonattendance (p < 0.004). Age and gender were not significantly associated with nonattendance proportions. A multivariate logistic regression model demonstrated that the waiting time for an appointment, time of the day, and the patients' origin was significantly associated with nonattendance.</p> <p>Conclusion</p> <p>The factors associated with nonattendance in pediatric pulmonary clinics include the length of waiting time for an appointment, the hour of the appointment within the day and the origin of the patient.</p

    Children with Neuromuscular Disorders

    Full text link

    Physical Activity Attenuates Intermittent Hypoxia-induced Spatial Learning Deficits and Oxidative Stress

    No full text
    Rationale: Exposure to intermittent hypoxia (IH), such as occurs in sleep-disordered breathing, is associated with substantial cognitive impairments, oxidative stress and inflammation, and increased neuronal cell losses in brain regions underlying learning and memory in rats. Physical activity (PA) is now recognized as neuroprotective in models of neuronal injury and degeneration

    Montelukast for Children With Obstructive Sleep Apnea: A Double-blind, Placebo-Controlled Study

    Full text link
    OBJECTIVES: Children with nonsevere obstructive sleep apnea (OSA) benefit from alternative therapeutic interventions such as leukotriene modifiers. We hypothesized that montelukast might improve OSA in children. We tested this hypothesis in a double-blind, randomized, placebo-controlled fashion. METHODS: Of 50 possible candidates, we recruited 46 children with polysomnographically diagnosed OSA. In this prospective, double-blind, randomized trial, children received daily oral montelukast at 4 or 5 mg (&amp;lt;6 or &amp;gt;6 years of age, respectively) or placebo for 12 weeks. Polysomnographic assessments, parent questionnaires, and radiographs to assess adenoid size were performed before and after therapy. RESULTS: Compared with the 23 children that received placebo, the 23 children that received montelukast showed significant improvements in polysomnographic measures of respiratory disturbance (obstructive apnea index), children's symptoms, and adenoid size. The obstructive apnea index decreased by &amp;gt;50% in 65.2% of treated children. No attrition or side effects occurred. CONCLUSIONS: A 12-week treatment with daily, oral montelukast effectively reduced the severity of OSA and the magnitude of the underlying adenoidal hypertrophy in children with nonsevere OSA. </jats:sec
    corecore