265 research outputs found

    Optimal energy management for a flywheel-assisted battery electric vehicle

    Get PDF
    Battery electric vehicles are crucial to the reduction in the dependence on fossil fuels and for moving towards a zero-emission transport system. Although battery electric vehicle technology has been rapidly improving, the limited driving range and the high cost are significant impediments to the popularity of electric vehicles. The battery is the main element which affects the range and the cost of the vehicle. The batteries can provide either high power or high energy but not both. Hybridisation of the energy source is one of the methods to improve the energy efficiency of the vehicle, which involves combining a high-energy battery with a high-power source. High-speed flywheels have attractive properties and low-cost potential which makes them excellent secondary energy storage devices to be used in hybrid and electric vehicles. They are utilised to load the battery to a level so as to protect it from peak loads and to enhance its capacity and life. The flywheel is coupled to the drive line with a continuously variable transmission. This paper presents the optimal energy management strategy for a mechanically connected flywheel-assisted battery electric vehicle powertrain. The optimisation problem is complex because of factors such as the small storage capacity of the flywheel, the kinematic constraints and the slipping of clutches. Dynamic programming is used to calculate the optimal control strategy for torque distribution during operation in real-world driving cycles. The results show significant potential for reduction in the energy consumption in extra-urban and highway cycles, while reducing the peak battery loads during all cycles. The results give a benchmark of the energy-saving potential for such a powertrain and insights into how a real suboptimal controller can be designed

    Both Palatable And Unpalatable Butterflies Use Bright Colors To Signal Difficulty Of Capture To Predators

    Get PDF
    Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Birds are able to recognize and learn to avoid attacking unpalatable, chemically defended butterflies after unpleasant experiences with them. It has also been suggested that birds learn to avoid prey that are efficient at escaping. This, however, remains poorly documented. Here, we argue that butterflies may utilize a variety of escape tactics against insectivorous birds and review evidence that birds avoid attacking butterflies that are hard to catch. We suggest that signaling difficulty of capture to predators is a widespread phenomenon in butterflies, and this ability may not be limited to palatable butterflies. The possibility that both palatable and unpalatable species signal difficulty of capture has not been fully explored, but helps explain the existence of aposematic coloration and escape mimicry in butterflies lacking defensive chemicals. This possibility may also change the role that putative Mullerian and Batesian mimics play in a variety of classical mimicry rings, thus opening new perspectives in the evolution of mimicry in butterflies.45107113FAPDF/CNPq/Pronex [563/2009]Brazilian Research Council [302585/2011-7]Brazilian Research Council (SISBIOTA-Brasil/CNPq) [563332/2010-7]National Science Foundation [DEB-1256742]FAPESP (BIOTA-FAPESP Program) [2011/50225-3]Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP

    Screening of yeasts capable of producing cellulase-free xylanase

    Get PDF
    Xylanases have largely been obtained from filamentous fungi and bacteria; few studies have investigated the production of this enzyme by yeasts. The aim of this study was to isolate yeasts from different sources, such as vegetables, cereal grains, fruits, and agro-industrial waste and to obtain yeasts capable of producing celulase-free xylanase. Samples were enriched using yeast malt broth, and yeasts were isolated on Wallerstein nutrient agar. In all, 119 yeast strains were isolated and evaluated in terms of their ability to degrade xylan, which was found in the medium by using agar degradation halos, the basis of this polysaccharide, and Congo red dye. Selected microorganisms were grown in complex medium and the enzymatic activities of endo-xylanase, β-xylosidase, carboxymetilcellulase, and filter paper cellulose were determined over 96 h of cultivation; the pH and biomass concentration were also evaluated. The yeast strain 18Y, which was isolated from chicory and later identified as Cryptococcus laurentii, showed the highest endo-xylanase activity (2.7 U.mL-1). This strain had the ability to produce xylanase with low levels of cellulase production (both CMCase [0.11 U.mL-1] and FPase [0.10 U.mL-1]). This result gives this strain great biotechnological potential since this enzyme can be used for industrial pulp and paper bleaching.Key words: Cryptococcus laurentii, endo-xylanase, xylan

    Potential and Limitations of Dual Fuel Operation of High Speed Large Engines

    Full text link
    [EN] The aim of this paper is to identify and investigate the potential and limitations of diesel-gas combustion concepts for high speed large engines operated in gas mode with very small amounts of pilot fuel (<5% diesel fraction). Experimental tests were carried out on a flexible single cylinder research engine (displacement 6.24 dm(3)) equipped with a common rail system. Various engine configurations and operating parameters were varied and the effects on the combustion process were analyzed. The results presented in this paper include a comparison of the performance of the investigated dual fuel concept to those of a state-of-the-art monofuel gas engine and a state-of-the-art monofuel diesel engine. Evaluation reveals that certain limiting factors exist that prevent the dual fuel engine from performing as well as the superior gas engine. At the same NOx level of 1.3 g/kWh, the efficiency of the dual fuel engine is approximate to 3.5% pts. lower than that of the gas engine. This is caused by the weaker ignition performance of the injected pilot fuel compared to that of the gas scavenged prechamber of the gas engine. On the other hand, the dual fuel concept has the potential to compete with the diesel engine. The dual fuel engine can be operated at the efficiency level of the diesel engine yet with significantly lower NOx emissions (3.5 g/kWh and 6.3 g/kWh, respectively). Since the injection of pilot fuel is of major importance for flame initialization, and thus for the main combustion event of the dual fuel engine, optical investigations in a spray box, measurements of injection rates, and three-dimensional (3D) computational fluid dynamics (CFD) simulation were conducted to obtain even more detailed insight into these processes. A study on the influence of the diesel fraction shows that diminishing the diesel fraction from 3% to lower values has a significant impact on engine performance because of the effects of such a reduction on injection, ignition delay, and initial flame formation. The presented results illustrate which operating strategy is beneficial for engine performance in terms of low NOx emissions and high efficiency. Moreover, potential measures can be derived which allow for further optimization of the diesel-gas combustion process.The authors would like to acknowledge the financial support of the COMET Competence Centres for Excellent Technologies Programme of the Austrian Federal Ministry for Transport, Innovation and Technology (BMVIT); the Austrian Federal Ministry of Science, Research and Economy (BMWFW); and the Provinces of Styria, Tyrol, and Vienna for the K1-Centre LEC EvoLET. The COMET Programme is managed by the Austrian Research Promotion Agency (FFG). Austrian Research Promotion Agency (FFG) (844604).Redtenbacher, C.; Kiesling, C.; Malin, M.; Wimmer, A.; Pastor, JV.; Pinotti, M. (2018). Potential and Limitations of Dual Fuel Operation of High Speed Large Engines. Journal of Energy Resources Technology. 140(3):1-10. https://doi.org/10.1115/1.4038464S1101403Krishnan, S. R., Srinivasan, K. K., Singh, S., Bell, S. R., Midkiff, K. C., Gong, W., … Willi, M. (2003). Strategies for Reduced NOx Emissions in Pilot-Ignited Natural Gas Engines. Journal of Engineering for Gas Turbines and Power, 126(3), 665-671. doi:10.1115/1.1760530Raihan, M. S., Guerry, E. S., Dwivedi, U., Srinivasan, K. K., & Krishnan, S. R. (2015). Experimental Analysis of Diesel-Ignited Methane Dual-Fuel Low-Temperature Combustion in a Single-Cylinder Diesel Engine. Journal of Energy Engineering, 141(2). doi:10.1061/(asce)ey.1943-7897.0000235Sell, J., 2015, “Marine Klassifikation Von Gasmotoren—Beweggründe, Anforderungen, Herausforderungen,” Ninth Dessau Gas Engine Conference, Dessau, Germany, Apr. 16–17, pp. 13–20.Kiesling, C., Redtenbacher, C., Kirsten, M., Wimmer, A., Imhof, D., Berger, I., and García-Oliver, J., 2016, “Detailed Assessment of an Advanced Wide Range Diesel Injector for Dual Fuel Operation of Large Engines,” CIMAC Congress, Helsinki, Finland, June 6–10, Paper No. 78.http://www.lec.at/news-entries/detailed-assessment-of-an-advanced-wide-range-diesel-injector-for-dual-fuel-operation-of-large-engines/?lang=enEichmeier, J., Wagner, U., & Spicher, U. (2012). Controlling Gasoline Low Temperature Combustion by Diesel Micro Pilot Injection. Journal of Engineering for Gas Turbines and Power, 134(7). doi:10.1115/1.4005997Nieman, D. E., Dempsey, A. B., & Reitz, R. D. (2012). Heavy-Duty RCCI Operation Using Natural Gas and Diesel. SAE International Journal of Engines, 5(2), 270-285. doi:10.4271/2012-01-0379Srinivasan, K. K., Krishnan, S. R., Singh, S., Midkiff, K. C., Bell, S. R., Gong, W., … Willi, M. (2004). The Advanced Injection Low Pilot Ignited Natural Gas Engine: A Combustion Analysis. Journal of Engineering for Gas Turbines and Power, 128(1), 213-218. doi:10.1115/1.1915428Srinivasan, K. K., Krishnan, S. R., & Qi, Y. (2013). Cyclic Combustion Variations in Dual Fuel Partially Premixed Pilot-Ignited Natural Gas Engines. Journal of Energy Resources Technology, 136(1). doi:10.1115/1.4024855Tomita, E., Kawahara, N., Piao, Z., and Yamaguchi, R., 2002, “Effects of EGR and Early Injection of Diesel Fuel on Combustion Characteristics and Exhaust Emissions in a Methane Dual Fuel Engine,” SAEPaper No. 2002-01-2723.10.4271/2002-01-2723Krishnan, S. R., Biruduganti, M., Mo, Y., Bell, S. R., & Midkiff, K. C. (2002). Performance and heat release analysis of a pilot-ignited natural gas engine. International Journal of Engine Research, 3(3), 171-184. doi:10.1243/14680870260189280Laiminger, S., Trapp, C., Schaumberger, H., and Fouquet, M., 2011, “Die nächste Generation von Jenbacher Gasmotoren von GE—die wegweisende Kombination von zweistufiger Aufladung und innovativen Brennverfahren,” Seventh Dessau Gas Engine Conference, Dessau, Germany, Mar. 24–25, pp. 39–48.Dec, J. E. (1997). A Conceptual Model of DI Diesel Combustion Based on Laser-Sheet Imaging*. SAE Technical Paper Series. doi:10.4271/970873Krenn, M., Redtenbacher, C., Pirker, G., and Wimmer, A., 2015, “A New Approach for Combustion Modeling of Large Dual-Fuel Engines,” Heavy-Duty-, on- und Off-Highway-Motoren, 10 Internationale MTZ-Fachtagung, Speyer, Germany, pp. 1–14.Krenn, M., Pirker, G., Wimmer, A., Djuranec, S., Meier, M. C., Waldenmaier, U., and Zhu, J., 2014, “Methodology for Analysis and Simulation of Dual Fuel Combustion in Large Engines,” THIESEL Conference on Thermo- and Fluid Dynamic Processes in Direct Injection Engines, Valencia, Spain, Sept. 9–12, pp. 1–19.https://pure.tugraz.at/portal/en/publications/methodology-for-analysis-and-simulation-of-dual-fuel-combustion-in-large-engines(e3cf3100-3151-46af-9061-a04156df3522).htmlSchlatter, S., Schneider, B., Wright, Y., & Boulouchos, K. (2012). Experimental Study of Ignition and Combustion Characteristics of a Diesel Pilot Spray in a Lean Premixed Methane/Air Charge using a Rapid Compression Expansion Machine. SAE Technical Paper Series. doi:10.4271/2012-01-0825Kirsten, M., Pirker, G., Redtenbacher, C., Wimmer, A., & Chmela, F. (2016). Advanced Knock Detection for Diesel/Natural Gas Engine Operation. SAE International Journal of Engines, 9(3), 1571-1583. doi:10.4271/2016-01-0785Vandersickel, A., 2011, “Two Approaches to Auto-Ignition Modelling for HCCI Applications,” Doctoral thesis, ETH Zurich, Zurich, Germany, p. 20.https://www.research-collection.ethz.ch/bitstream/handle/20.500.11850/43686/eth-4813-01.pdfCiezki, H. K., & Adomeit, G. (1993). Shock-tube investigation of self-ignition of n-heptane-air mixtures under engine relevant conditions. Combustion and Flame, 93(4), 421-433. doi:10.1016/0010-2180(93)90142-pPfahl, U., Fieweger, K., and Adomeit, G., 1996, “Self-Ignition of Diesel-Relevant Hydrocarbon-Air Mixtures Under Engine Conditions,” 26th Symposium (International) on Combustion/the Combustion Institute, Pittsburgh, PA, pp. 781–789

    Pre-screening of filamentous fungi isolated from a contaminated site in Southern Brazil for bioaugmentation purposes

    Get PDF
    Four Aspergillus sp. strains were isolated from contaminated soil in Rio Grande, Southern Brazil. The biodegradation potential of these strains was evaluated using a simple method involving the determination of colony growth rates on plates containing a specific hydrocarbon or petroleumderivative as the only carbon source. The LEBM1 strain presented a high tolerance level to BTX. It was the only strain capable of growth on all the media, with growth rates varying from 1.3 to 2.2 mm/day. The LEBM2 strain presented the potential for phenol degradation, while the LEBM3 strain could be used for gasoline, diesel oil, hexane and chlorobenzene

    'Species' from two different butterfly genera combined into one: description of a new genus of Euptychiina (Nymphalidae: Satyrinae) with unusually variable wing pattern

    Get PDF
    Sepona Freitas and Barbosa, gen. nov. is proposed for the Neotropical satyrine butterfly species Euptychia punctata Weymer, 1911 and its junior subjective synonyms Euptychia griseola Weymer, 1911 and Taygetis indecisa Ribeiro, 1931. The new genus has a distinctive wing pattern and shape of the valvae in the male genitalia, the latter being a unique autapomorphy within the subtribe Euptychiina. Based on molecular data, this genus is not sister to any other single euptychiine genus, instead appearing as the sister to all remaining genera in the Taygetis clade. The present paper illustrates the complexity of the taxonomy of Euptychiina, and the importance of using different sources of evidence in taxonomic studies. (C) 2016 Sociedade Brasileira de Entomologia. Published by Elsevier Editora Ltda

    Morphology and behavior of the early stages of the skipper, Urbanus esmeraldus, on Urera baccifera, an ant-visited host plant

    Get PDF
    Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)The Neotropical genus Urbanus (Hubner) (Lepidoptera: Hesperiidae) contains around 34 described species, and is widely distributed from the extreme southern United States to Argentina. Here, we describe the larval morphology and behavior of Urbanus esmeraldus (Hubner)(Hesperiidae) in Urera baccifera (Urticaceae), a plant producing food rewards and fleshy fruits that attract ants (including predacious species) in a Brazilian forest. Larvae pass through five instars and construct two kinds of leaf shelters. Experiments with ejected fecal pellets showed that these can serve as cues to ground-dwelling ants that climb onto host plants and potentially attack the larvae. Manipulation with pellets placed at different distances suggests that ejection behavior decreases larval vulnerability to ant predation. Larval preference for mature leaves may be related with increased predation risk at ant-visited young leaves. The study shows that a combination of natural history and experimental data can help understand the life history of a butterfly using a plant with high predation risk.12Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundo de Apoio ao Ensino, a Pesquisa e a Extensao (FAEPEX)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)FAPESP [00/01484-1, 04/05269-9]FAPESP [98/05101-8

    Butterflies (Lepidoptera: Papilionoidea and Hesperioidea) of the Parque Ecologic Joao Vasconcelos Sobrinho, Caruaru, Pernambuco, Brazil

    Get PDF
    Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Comprising a natural reserve with 359 ha of "montane forest" inserted on the Brazilian semi-arid, the Parque Ecologic Joao Vasconcelos Sobrinho (PEJVS), locally known as "Brejo dos Cavalos" is currently under high anthropogenic pressure. A list of 197 species of butterflies belonging to six families is presented, being 59 species of Hesperiidae, 4 of Papilionidae, 18 of Pieridae, 17 of Lycaenidae, 12 of Riodinidae and 87 of Nymphalidae. The butterfly community was composed mainly by widespread species commonly found in open habitats. There were also many species typical of forested areas such as Scada karschina delicata Talbot, 1932 (Danainae: Ithomiini), which is an endangered butterfly.114229238Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)FACEPE [APQ - 0011-2.04/07]OHHMMMCFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)National Science Foundation (DEB) [0527441]Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)CNPq [DCR - 0045-2.04/06]FACEPE [APQ - 0011-2.04/07]CNPq [300282/2008-7]FAPESP [00/01484-1, 04/05269-9]National Science Foundation (DEB) [0527441]CNPq [563332/2010-7

    Chromosomal evolution in the South American nymphalidae

    Get PDF
    We give the chromosome numbers of about 80 species or subspecies of Biblidinae as well as of numbers of neotropical Libytheinae (one species), Cyrestinae (4) Apaturinae (7), Nymphalinae (about 40), Limenitidinae (16) and Heliconiinae (11). Libytheana has about n=32, the Biblidinae, Apaturinae and Nymphalinae have in general n=31, the Limenitidinae have n=30, the few Argynnini n=31 and the few species of Acraeni studied have also mostly n=31. The results agree with earlier data from the Afrotropical species of these taxa. We supplement these data with our earlier observations on Heliconiini, Danainae and the Neotropical Satyroid taxa. The lepidopteran modal n=29-31 represents clearly the ancestral condition among the Nymphalidae, from which taxa with various chromosome numbers have differentiated. The overall results show that Neotropical taxa have a tendency to evolve karyotype instability, which is in stark contrast to the otherwise stable chromosome numbers that characterize both Lepidoptera and Trichoptera.144413714
    corecore