4,088 research outputs found
Diffusion-Limited One-Species Reactions in the Bethe Lattice
We study the kinetics of diffusion-limited coalescence, A+A-->A, and
annihilation, A+A-->0, in the Bethe lattice of coordination number z.
Correlations build up over time so that the probability to find a particle next
to another varies from \rho^2 (\rho is the particle density), initially, when
the particles are uncorrelated, to [(z-2)/z]\rho^2, in the long-time asymptotic
limit. As a result, the particle density decays inversely proportional to time,
\rho ~ 1/kt, but at a rate k that slowly decreases to an asymptotic constant
value.Comment: To be published in JPCM, special issue on Kinetics of Chemical
Reaction
Exact mean first-passage time on the T-graph
We consider a simple random walk on the T-fractal and we calculate the exact
mean time to first reach the central node . The mean is performed
over the set of possible walks from a given origin and over the set of starting
points uniformly distributed throughout the sites of the graph, except .
By means of analytic techniques based on decimation procedures, we find the
explicit expression for as a function of the generation and of the
volume of the underlying fractal. Our results agree with the asymptotic
ones already known for diffusion on the T-fractal and, more generally, they are
consistent with the standard laws describing diffusion on low-dimensional
structures.Comment: 6 page
Facilitated diffusion of proteins on chromatin
We present a theoretical model of facilitated diffusion of proteins in the
cell nucleus. This model, which takes into account the successive
binding/unbinding events of proteins to DNA, relies on a fractal description of
the chromatin which has been recently evidenced experimentally. Facilitated
diffusion is shown quantitatively to be favorable for a fast localization of a
target locus by a transcription factor, and even to enable the minimization of
the search time by tuning the affinity of the transcription factor with DNA.
This study shows the robustness of the facilitated diffusion mechanism, invoked
so far only for linear conformations of DNA.Comment: 4 pages, 4 figures, accepted versio
Probing Non-Integer Dimensions
We show that two-dimensional convection-diffusion problems with a radial sink
or source at the origin may be recast as a pure diffusion problem in a
fictitious space in which the spatial dimension is continuously-tunable with
the Peclet number. This formulation allows us to probe various
diffusion-controlled processes in non-integer dimensions.Comment: 6 pages, 2 column-revtex4 format. Submitted to special issue of
Journal of Physics: Condensed Matter, on "Chemical Kinetics Beyond the
Textbook: Fluctuations, Many-Particle Effects and Anomalous Dynamics", eds.
K. Lindenberg, G. Oshanin, & M. Tachiy
Quantum phase transitions, frustration, and the Fermi surface in the Kondo lattice model
The quantum phase transition from a spin-Peierls phase with a small Fermi
surface to a paramagnetic Luttinger-liquid phase with a large Fermi surface is
studied in the framework of a one-dimensional Kondo-Heisenberg model that
consists of an electron gas away from half filling, coupled to a spin-1/2 chain
by Kondo interactions. The Kondo spins are further coupled to each other with
isotropic nearest-neighbor and next-nearest-neighbor antiferromagnetic
Heisenberg interactions which are tuned to the Majumdar-Ghosh point. Focusing
on three-eighths filling and using the density-matrix renormalization-group
(DMRG) method, we show that the zero-temperature transition between the phases
with small and large Fermi momenta appears continuous, and involves a new
intermediate phase where the Fermi surface is not well defined. The
intermediate phase is spin gapped and has Kondo-spin correlations that show
incommensurate modulations. Our results appear incompatible with the local
picture for the quantum phase transition in heavy fermion compounds, which
predicts an abrupt change in the size of the Fermi momentum.Comment: 9 pages, 8 figure
Two-Species Annihilation with Drift: A Model with Continuous Concentration-Decay Exponents
We propose a model for diffusion-limited annihilation of two species, or , where the motion of the particles is subject to a drift. For equal
initial concentrations of the two species, the density follows a power-law
decay for large times. However, the decay exponent varies continuously as a
function of the probability of which particle, the hopping one or the target,
survives in the reaction. These results suggest that diffusion-limited
reactions subject to drift do not fall into a limited number of universality
classes.Comment: 10 pages, tex, 3 figures, also available upon reques
Exact calculations of first-passage quantities on recursive networks
We present general methods to exactly calculate mean-first passage quantities
on self-similar networks defined recursively. In particular, we calculate the
mean first-passage time and the splitting probabilities associated to a source
and one or several targets; averaged quantities over a given set of sources
(e.g., same-connectivity nodes) are also derived. The exact estimate of such
quantities highlights the dependency of first-passage processes with respect to
the source-target distance, which has recently revealed to be a key parameter
to characterize transport in complex media. We explicitly perform calculations
for different classes of recursive networks (finitely ramified fractals,
scale-free (trans)fractals, non-fractals, mixtures between fractals and
non-fractals, non-decimable hierarchical graphs) of arbitrary size. Our
approach unifies and significantly extends the available results in the field.Comment: 16 pages, 10 figure
- …
