2,303 research outputs found

    Sampling Free Energy Surfaces as Slices by Combining Umbrella Sampling and Metadynamics

    Get PDF
    Metadynamics (MTD) is a very powerful technique to sample high-dimensional free energy landscapes, and due to its self-guiding property, the method has been successful in studying complex reactions and conformational changes. MTD sampling is based on filling the free energy basins by biasing potentials and thus for cases with flat, broad and unbound free energy wells, the computational time to sample them becomes very large. To alleviate this problem, we combine the standard Umbrella Sampling (US) technique with MTD to sample orthogonal collective variables (CVs) in a simultaneous way. Within this scheme, we construct the equilibrium distribution of CVs from biased distributions obtained from independent MTD simulations with umbrella potentials. Reweighting is carried out by a procedure that combines US reweighting and Tiwary-Parrinello MTD reweighting within the Weighted Histogram Analysis Method (WHAM). The approach is ideal for a controlled sampling of a CV in a MTD simulation, making it computationally efficient in sampling flat, broad and unbound free energy surfaces. This technique also allows for a distributed sampling of a high-dimensional free energy surface, further increasing the computational efficiency in sampling. We demonstrate the application of this technique in sampling high-dimensional surface for various chemical reactions using ab initio and QM/MM hybrid molecular dynamics simulations. Further, in order to carry out MTD bias reweighting for computing forward reaction barriers in ab initio or QM/MM simulations, we propose a computationally affordable approach that does not require recrossing trajectories

    Exploring High Dimensional Free Energy Landscapes: Temperature Accelerated Sliced Sampling

    Get PDF
    Biased sampling of collective variables is widely used to accelerate rare events in molecular simulations and to explore free energy surfaces. However, computational efficiency of these methods decreases with increasing number of collective variables, which severely limits the predictive power of the enhanced sampling approaches. Here we propose a method called Temperature Accelerated Sliced Sampling (TASS) that combines temperature accelerated molecular dynamics with umbrella sampling and metadynamics to sample the collective variable space in an efficient manner. The presented method can sample a large number of collective variables and is advantageous for controlled exploration of broad and unbound free energy basins. TASS is also shown to achieve quick free energy convergence and is practically usable with ab initio molecular dynamics techniques

    Confusing Sterile Neutrinos with Deviation from Tribimaximal Mixing at Neutrino Telescopes

    Full text link
    We expound the impact of extra sterile species on the ultra high energy neutrino fluxes in neutrino telescopes. We use three types of well-known flux ratios and compare the values of these flux ratios in presence of sterile neutrinos, with those predicted by deviation from the tribimaximal mixing scheme. We show that in the upcoming neutrino telescopes, its easy to confuse between the signature of sterile neutrinos with that of the deviation from tribimaximal mixing. We also show that if the measured flux ratios acquire a value well outside the range predicted by the standard scenario with three active neutrinos only, it might be possible to tell the presence of extra sterile neutrinos by observing ultra high energy neutrinos in future neutrino telescopes.Comment: 22 pages, version to appear in Phys. Rev.

    Multi-wavelength Diagnostics of the Precursor and Main phases of an M1.8 Flare on 2011 April 22

    Get PDF
    We study the temporal, spatial and spectral evolution of the M1.8 flare, which occurred in NOAA AR 11195 (S17E31) on 22 April 2011, and explore the underlying physical processes during the precursors and their relation to the main phase. The study of the source morphology using the composite images in 131 {\deg}A wavelength observed by the SDO/AIA and 6-14 keV revealed a multiloop system that destabilized systematically during the precursor and main phases. In contrast, HXR emission (20-50 keV) was absent during the precursor phase, appearing only from the onset of the impulsive phase in the form of foot-points of emitting loop/s. This study has also revealed the heated loop-top prior to the loop emission, although no accompanying foot-point sources were observed during the precursor phase. We estimate the flare plasma parameters viz. T, EM, power-law index, and photon turn-over energy by forward fitting RHESSI spectral observations. The energy released in the precursor phase was thermal and constituted ~1 per cent of the total energy released during the flare. The study of morphological evolution of the filament in conjunction with synthesized T and EM maps has been carried out which reveals (a) Partial filament eruption prior to the onset of the precursor emission, (b) Heated dense plasma over the polarity inversion line and in the vicinity of the slowly rising filament during the precursor phase. Based on the implications from multi-wavelength observations, we propose a scheme to unify the energy release during the precursor and main phase emissions in which, the precursor phase emission has been originated via conduction front formed due to the partial filament eruption. Next, the heated leftover S-shaped filament has undergone slow rise and heating due to magnetic reconnection and finally erupted to produce emission during the impulsive and gradual phases.Comment: 16 Pages, 11 Figures, Accepted for Publication in MNRAS Main Journa
    corecore