1,834 research outputs found
Break-down of the single-active-electron approximation for one-photon ionization of the B state of H exposed to intense laser fields
Ionization, excitation, and de-excitation to the ground state is studied
theoretically for the first excited singlet state B of H
exposed to intense laser fields with photon energies in between about 3 eV and
13 eV. A parallel orientation of a linear polarized laser and the molecular
axis is considered. Within the dipole and the fixed-nuclei approximations the
time-dependent Schr\"odinger equation describing the electronic motion is
solved in full dimensionality and compared to simpler models. A dramatic
break-down of the single-active-electron approximation is found and explained
to be due to the inadequate description of the final continuum states.Comment: 9 pages, 4 figure
Carrier Transport in Magnesium Diboride: Role of Nano-inclusions
Anisotropic-gap and two-band effects smear out the superconducting transition
(Tc) in literature reported thermal conductivity of MgB2, where large
electronic contributions also suppress anomaly-manifestation in their
negligible phononic-parts. Present thermal transport results on scarcely
explored specimens featuring nano-inclusions exhibit a small but clear
Tc-signature, traced to relatively appreciable phononic conduction, and its
dominant electronic-scattering. The self-formed MgO as extended defects
strongly scatter the charge carriers and minutely the phonons with their
longer-mean-free-path near Tc. Conversely, near room temperature, the
shorter-dominant-wavelength phonon's transport is hugely affected by these
nanoparticles, undergoing ballistic to diffusive crossover and eventually
entering the Ioffe-Regel mobility threshold regime.Comment: 14 pages, 4 figures, 28 reference
Spin-lattice coupling mediated giant magnetodielectricity across the spin reorientation in Ca2FeCoO5
The structural, phonon, magnetic, dielectric, and magneto dielectric
responses of the pure bulk Brownmillerite compound Ca2FeCoO5 are reported. This
compound showed giant magneto dielectric response (10%-24%) induced by strong
spin-lattice coupling across its spin reorientation transition (150-250 K). The
role of two Debye temperatures pertaining to differently coordinated sites in
the dielectric relaxations is established. The positive giant
magneto-dielectricity is shown to be a direct consequence of the modulations in
the lattice degrees of freedom through applied external field across the spin
reorientation transition. Our study illustrates novel control of
magneto-dielectricity by tuning the spin reorientation transition in a material
that possess strong spin lattice coupling.Comment: 7 pages, 12 figure
An Experimental and Multiphysics Based Numerical Study to Predict Automotive Fuel Tank Sloshing Noise
With significant decrease in the background noise in present day automobiles, liquid slosh noise from an automotive fuel tank is considered as a major irritant during acceleration and deceleration. All major international OEMs and their suppliers try to reduce sloshing noise by various design modifications in the fuel tank. However, most major activities reported in open literature are primarily based on performing various CAE and experimental studies in isolation. However, noise generation and its propagation is a multiphysics phenomenon, where fluid mechanics due to liquid sloshing affects structural behaviour of the fuel tank and its mountings which in turn affects noise generation and propagation. In the present study a multiphysics approach to noise generation has been used to predict liquid sloshing noise from a rectangular tank. Computational Fluid dynamics (CFD), Finite Element Analysis (FEA) and Boundary Element Method (BEM) simulation studies have been performed in a semi-coupled manner to predict noise. VOF based multiphase model along with k-ε turbulence model was used to perform the CFD studies. Sloshing Noise generated due to fluid interaction with structural walls is simulated using Vibro-acoustic model. An integrated model is developed to predict dynamic forces and vibration displacement on tank walls due to dynamic pressure loading on tank walls. Noise radiated from tank walls is modelled by Harmonic Boundary Element Method. Experimental and numerical studies have been performed to understand the mechanics of sloshing noise generation. Images from high speed video camera and noise measurement data have been used to compare with numerical models
Multi-wavelength Diagnostics of the Precursor and Main phases of an M1.8 Flare on 2011 April 22
We study the temporal, spatial and spectral evolution of the M1.8 flare,
which occurred in NOAA AR 11195 (S17E31) on 22 April 2011, and explore the
underlying physical processes during the precursors and their relation to the
main phase. The study of the source morphology using the composite images in
131 {\deg}A wavelength observed by the SDO/AIA and 6-14 keV revealed a
multiloop system that destabilized systematically during the precursor and main
phases. In contrast, HXR emission (20-50 keV) was absent during the precursor
phase, appearing only from the onset of the impulsive phase in the form of
foot-points of emitting loop/s. This study has also revealed the heated
loop-top prior to the loop emission, although no accompanying foot-point
sources were observed during the precursor phase. We estimate the flare plasma
parameters viz. T, EM, power-law index, and photon turn-over energy by forward
fitting RHESSI spectral observations. The energy released in the precursor
phase was thermal and constituted ~1 per cent of the total energy released
during the flare. The study of morphological evolution of the filament in
conjunction with synthesized T and EM maps has been carried out which reveals
(a) Partial filament eruption prior to the onset of the precursor emission, (b)
Heated dense plasma over the polarity inversion line and in the vicinity of the
slowly rising filament during the precursor phase. Based on the implications
from multi-wavelength observations, we propose a scheme to unify the energy
release during the precursor and main phase emissions in which, the precursor
phase emission has been originated via conduction front formed due to the
partial filament eruption. Next, the heated leftover S-shaped filament has
undergone slow rise and heating due to magnetic reconnection and finally
erupted to produce emission during the impulsive and gradual phases.Comment: 16 Pages, 11 Figures, Accepted for Publication in MNRAS Main Journa
- …
