153 research outputs found

    ENaC–Membrane Interactions: Regulation of Channel Activity by Membrane Order

    Get PDF
    Recently, it was reported that the epithelial Na+ channel (ENaC) is regulated by temperature (Askwith, C.C., C.J. Benson, M.J. Welsh, and P.M. Snyder. 2001. Proc. Natl. Acad. Sci. USA. 98:6459–6463). As these changes of temperature affect membrane lipid order and lipid–protein interactions, we tested the hypothesis that ENaC activity can be modulated by membrane lipid interactions. Two approaches were used to modulate membrane anisotropy, a lipid order–dependent parameter. The nonpharmacological approach used temperature changes, while the pharmacological one used chlorpromazine (CPZ), an agent known to decrease membrane order, and Gd+3. Experiments used Xenopus oocytes expressing human ENaC. Methods of impedance analysis were used to determine whether the effects of changing lipid order indirectly altered ENaC conductance via changes of membrane area. These data were further corroborated with quantitative morphology on micrographs from oocytes membranes studied via electron microscopy. We report biphasic effects of cooling (stimulation followed by inhibition) on hENaC conductance. These effects were relatively slow (minutes) and were delayed from the actual bath temperature changes. Peak stimulation occurred at a calculated Tmax of 15.2. At temperatures below Tmax, ENaC conductance was inhibited with cooling. The effects of temperature on gNa were distinct from those observed on ion channels endogenous to Xenopus oocytes, where the membrane conductance decreased monoexponentially with temperature (t = 6.2°C). Similar effects were also observed in oocytes with reduced intra- and extracellular [Na+], thereby ruling out effects of self or feedback inhibition. Addition of CPZ or the mechanosensitive channel blocker, Gd+3, caused inhibition of ENaC. The effects of Gd+3 were also attributed to its ability to partition into the outer membrane leaflet and to decrease anisotropy. None of the effects of temperature, CPZ, or Gd+3 were accompanied by changes of membrane area, indicating the likely absence of effects on channel trafficking. However, CPZ and Gd+3 altered membrane capacitance in an opposite manner to temperature, consistent with effects on the membrane-dielectric properties. The reversible effects of both Gd+3 and CPZ could also be blocked by cooling and trapping these agents in the rigidified membrane, providing further evidence for their mechanism of action. Our findings demonstrate a novel regulatory mechanism of ENaC

    Protease Modulation of the Activity of the Epithelial Sodium Channel Expressed in Xenopus Oocytes

    Get PDF
    We have investigated the effect of extracellular proteases on the amiloride-sensitive Na+ current (INa) in Xenopus oocytes expressing the three subunits α, β, and γ of the rat or Xenopus epithelial Na+ channel (ENaC). Low concentrations of trypsin (2 μg/ml) induced a large increase of INa within a few minutes, an effect that was fully prevented by soybean trypsin inhibitor, but not by amiloride. A similar effect was observed with chymotrypsin, but not with kallikrein. The trypsin-induced increase of INa was observed with Xenopus and rat ENaC, and was very large (∼20-fold) with the channel obtained by coexpression of the α subunit of Xenopus ENaC with the β and γ subunits of rat ENaC. The effect of trypsin was selective for ENaC, as shown by the absence of effect on the current due to expression of the K+ channel ROMK2. The effect of trypsin was not prevented by intracellular injection of EGTA nor by pretreatment with GTP-γS, suggesting that this effect was not mediated by G proteins. Measurement of the channel protein expression at the oocyte surface by antibody binding to a FLAG epitope showed that the effect of trypsin was not accompanied by an increase in the channel protein density, indicating that proteolysis modified the activity of the channel present at the oocyte surface rather than the cell surface expression. At the single channel level, in the cell-attached mode, more active channels were observed in the patch when trypsin was present in the pipette, while no change in channel activity could be detected when trypsin was added to the bath solution around the patch pipette. We conclude that extracellular proteases are able to increase the open probability of the epithelial sodium channel by an effect that does not occur through activation of a G protein-coupled receptor, but rather through proteolysis of a protein that is either a constitutive part of the channel itself or closely associated with it

    Cravens Virtual Museum Project: A case study of digital heritage and museum education

    No full text
    M.A.3D scanning and printing has emerged into the 21st century as a tool to digital heritage for both preserving and disseminating cultural heritage for the benefit of humankind. 3D technologies have allowed for the production of three dimensional digital artifacts that can be physically printed and developed into virtual education and research modules. This thesis represents research on the current field of digital heritage, exploring the use of 3D technologies for the preservation and dissemination of cultural heritage in the form of archaeological sites and objects in museums. It shows how digital 3D technology and 3D printing has given archaeologists and museums new tools for research and education. It shows the methods and processes of data collection done by the author as part of the Cravens Virtual Museum Project which delivered 38 finished 3D models. The digitalization of the Cravens Collection shows how 3D models are the basis for a new way to digitally document the museum exhibitions, and show that through a relatively easy process of artifact data collection and processing, there can be a digital 3D catalogue of objects made publicly accessible online. The digital models were used for educational and outreach opportunities at the University at Buffalo’s Art Galleries in three main ways: 3D printing, online websites, and virtual/augmented reality. Similar case studies in each of these ways are presented, as well as compared to the ways they were used as part of the Cravens Virtual Museum Project. This thesis shows that 3D technologies provide a better form of documentation of museum objects, can provide access to museum collections to anyone anywhere, and can be elaborated on to form educational tools that engage audiences and foster interest into archaeology and anthropology

    The epithelial sodium channel mediates the directionality of galvanotaxis in human keratinocytes.

    Get PDF
    Cellular directional migration in an electric field (galvanotaxis) is one of the mechanisms guiding cell movement in embryogenesis and in skin epidermal repair. The epithelial sodium channel (ENaC), in addition to its function of regulating sodium transport in kidney, has recently been found to modulate cell locomotory speed. Here we tested whether ENaC has an additional function of mediating the directional migration of galvanotaxis in keratinocytes. Genetic depletion of ENaC completely blocks only galvanotaxis and does not decrease migration speed. Overexpression of ENaC is sufficient to drive galvanotaxis in otherwise unresponsive cells. Pharmacologic blockade or maintenance of the open state of ENaC also decreases or increases, respectively, galvanotaxis, suggesting that the channel open state is responsible for the response. Stable lamellipodial extensions formed at the cathodal sides of wild-type cells at the start of galvanotaxis; these were absent in the ENaC knockout keratinocytes, suggesting that ENaC mediates galvanotaxis by generating stable lamellipodia that steer cell migration. We provide evidence that ENaC is required for directional migration of keratinocytes in an electric field, supporting a role for ENaC in skin wound healing

    Relapsing Group B Streptococcal Infection

    No full text

    Interacting domains in the epithelial sodium channel that mediate proteolytic activation

    Full text link
    Epithelial Sodium Channel (ENaC) proteolysis at sites in the extracellular loop of the α and γ subunits leads to marked activation. The mechanism of this effect remains debated, as well as the role of the N- and C-terminal fragments of these subunits created by cleavage. We introduced cysteines at sites bracketing upstream and downstream the cleavage regions in α and γ ENaC to examine the role of these fragments in the activated channel. Using thiol modifying reagents, as well as examining the effects of cleavage by exogenous proteases we constructed a functional model that determines the potential interactions of the termini near the cleavage regions. We report that the N-terminal fragments of both α and γ ENaC interact with the channel complex; with interactions between the N-terminal γ and the C-terminal α fragments being the most critical to channel function and activation by exogenous cleavage by subtilisin. Positive charge modification at a.a.135 in the N-terminal fragment of γ exhibited the largest inhibition of channel function. This region was found to interact with the C-terminal α fragment between a.a. 205 and 221; a tract which was previously identified to be the site of subtilisin's action. These data provide the first evidence for the functional channel rearrangement caused by proteolysis of the α and γ subunit and indicate that the untethered N-terminal fragments of these subunits interact with the channel complex
    corecore