3,742 research outputs found
The map equation
Many real-world networks are so large that we must simplify their structure
before we can extract useful information about the systems they represent. As
the tools for doing these simplifications proliferate within the network
literature, researchers would benefit from some guidelines about which of the
so-called community detection algorithms are most appropriate for the
structures they are studying and the questions they are asking. Here we show
that different methods highlight different aspects of a network's structure and
that the the sort of information that we seek to extract about the system must
guide us in our decision. For example, many community detection algorithms,
including the popular modularity maximization approach, infer module
assignments from an underlying model of the network formation process. However,
we are not always as interested in how a system's network structure was formed,
as we are in how a network's extant structure influences the system's behavior.
To see how structure influences current behavior, we will recognize that links
in a network induce movement across the network and result in system-wide
interdependence. In doing so, we explicitly acknowledge that most networks
carry flow. To highlight and simplify the network structure with respect to
this flow, we use the map equation. We present an intuitive derivation of this
flow-based and information-theoretic method and provide an interactive on-line
application that anyone can use to explore the mechanics of the map equation.
We also describe an algorithm and provide source code to efficiently decompose
large weighted and directed networks based on the map equation.Comment: 9 pages and 3 figures, corrected typos. For associated Flash
application, see http://www.tp.umu.se/~rosvall/livemod/mapequation
Weighted maximal regularity estimates and solvability of non-smooth elliptic systems II
We continue the development, by reduction to a first order system for the
conormal gradient, of \textit{a priori} estimates and solvability for
boundary value problems of Dirichlet, regularity, Neumann type for divergence
form second order, complex, elliptic systems. We work here on the unit ball and
more generally its bi-Lipschitz images, assuming a Carleson condition as
introduced by Dahlberg which measures the discrepancy of the coefficients to
their boundary trace near the boundary. We sharpen our estimates by proving a
general result concerning \textit{a priori} almost everywhere non-tangential
convergence at the boundary. Also, compactness of the boundary yields more
solvability results using Fredholm theory. Comparison between classes of
solutions and uniqueness issues are discussed. As a consequence, we are able to
solve a long standing regularity problem for real equations, which may not be
true on the upper half-space, justifying \textit{a posteriori} a separate work
on bounded domains.Comment: 76 pages, new abstract and few typos corrected. The second author has
changed nam
Extremely narrow spectrum of GRB110920A: further evidence for localised, subphotospheric dissipation
Much evidence points towards that the photosphere in the relativistic outflow
in GRBs plays an important role in shaping the observed MeV spectrum. However,
it is unclear whether the spectrum is fully produced by the photosphere or
whether a substantial part of the spectrum is added by processes far above the
photosphere. Here we make a detailed study of the ray emission from
single pulse GRB110920A which has a spectrum that becomes extremely narrow
towards the end of the burst. We show that the emission can be interpreted as
Comptonisation of thermal photons by cold electrons in an unmagnetised outflow
at an optical depth of . The electrons receive their energy by a
local dissipation occurring close to the saturation radius. The main spectral
component of GRB110920A and its evolution is thus, in this interpretation,
fully explained by the emission from the photosphere including localised
dissipation at high optical depths.Comment: 14 pages, 11 figures, accepted to MNRA
Categorization of indoor places by combining local binary pattern histograms of range and reflectance data from laser range finders
This paper presents an approach to categorize typical places in indoor environments using 3D scans provided by a laser range finder. Examples of such places are offices, laboratories, or kitchens. In our method, we combine the range and reflectance data from the laser scan for the final categorization of places. Range and reflectance images are transformed into histograms of local binary patterns and combined into a single feature vector. This vector is later classified using support vector machines. The results of the presented experiments demonstrate the capability of our technique to categorize indoor places with high accuracy. We also show that the combination of range and reflectance information improves the final categorization results in comparison with a single modality
Adaptive grid methods for Q-tensor theory of liquid crystals : a one-dimensional feasibility study
This paper illustrates the use of moving mesh methods for solving partial differential equation (PDE) problems in Q-tensor theory of liquid crystals. We present the results of an initial study using a simple one-dimensional test problem which illustrates the feasibility of applying adaptive grid techniques in such situations. We describe how the grids are computed using an equidistribution principle, and investigate the comparative accuracy of adaptive and uniform grid strategies, both theoretically and via numerical examples
Finite Automata for the Sub- and Superword Closure of CFLs: Descriptional and Computational Complexity
We answer two open questions by (Gruber, Holzer, Kutrib, 2009) on the
state-complexity of representing sub- or superword closures of context-free
grammars (CFGs): (1) We prove a (tight) upper bound of on
the size of nondeterministic finite automata (NFAs) representing the subword
closure of a CFG of size . (2) We present a family of CFGs for which the
minimal deterministic finite automata representing their subword closure
matches the upper-bound of following from (1).
Furthermore, we prove that the inequivalence problem for NFAs representing sub-
or superword-closed languages is only NP-complete as opposed to PSPACE-complete
for general NFAs. Finally, we extend our results into an approximation method
to attack inequivalence problems for CFGs
Recovery of gastric evacuation rate in Atlantic cod Gadus morhua L. surgically implanted with a dummy telemetry devic
Conical square function estimates in UMD Banach spaces and applications to H-infinity functional calculi
We study conical square function estimates for Banach-valued functions, and
introduce a vector-valued analogue of the Coifman-Meyer-Stein tent spaces.
Following recent work of Auscher-McIntosh-Russ, the tent spaces in turn are
used to construct a scale of vector-valued Hardy spaces associated with a given
bisectorial operator (A) with certain off-diagonal bounds, such that (A) always
has a bounded (H^{\infty})-functional calculus on these spaces. This provides a
new way of proving functional calculus of (A) on the Bochner spaces
(L^p(\R^n;X)) by checking appropriate conical square function estimates, and
also a conical analogue of Bourgain's extension of the Littlewood-Paley theory
to the UMD-valued context. Even when (X=\C), our approach gives refined
(p)-dependent versions of known results.Comment: 28 pages; submitted for publicatio
- …
