3,742 research outputs found

    The map equation

    Full text link
    Many real-world networks are so large that we must simplify their structure before we can extract useful information about the systems they represent. As the tools for doing these simplifications proliferate within the network literature, researchers would benefit from some guidelines about which of the so-called community detection algorithms are most appropriate for the structures they are studying and the questions they are asking. Here we show that different methods highlight different aspects of a network's structure and that the the sort of information that we seek to extract about the system must guide us in our decision. For example, many community detection algorithms, including the popular modularity maximization approach, infer module assignments from an underlying model of the network formation process. However, we are not always as interested in how a system's network structure was formed, as we are in how a network's extant structure influences the system's behavior. To see how structure influences current behavior, we will recognize that links in a network induce movement across the network and result in system-wide interdependence. In doing so, we explicitly acknowledge that most networks carry flow. To highlight and simplify the network structure with respect to this flow, we use the map equation. We present an intuitive derivation of this flow-based and information-theoretic method and provide an interactive on-line application that anyone can use to explore the mechanics of the map equation. We also describe an algorithm and provide source code to efficiently decompose large weighted and directed networks based on the map equation.Comment: 9 pages and 3 figures, corrected typos. For associated Flash application, see http://www.tp.umu.se/~rosvall/livemod/mapequation

    Weighted maximal regularity estimates and solvability of non-smooth elliptic systems II

    Full text link
    We continue the development, by reduction to a first order system for the conormal gradient, of L2L^2 \textit{a priori} estimates and solvability for boundary value problems of Dirichlet, regularity, Neumann type for divergence form second order, complex, elliptic systems. We work here on the unit ball and more generally its bi-Lipschitz images, assuming a Carleson condition as introduced by Dahlberg which measures the discrepancy of the coefficients to their boundary trace near the boundary. We sharpen our estimates by proving a general result concerning \textit{a priori} almost everywhere non-tangential convergence at the boundary. Also, compactness of the boundary yields more solvability results using Fredholm theory. Comparison between classes of solutions and uniqueness issues are discussed. As a consequence, we are able to solve a long standing regularity problem for real equations, which may not be true on the upper half-space, justifying \textit{a posteriori} a separate work on bounded domains.Comment: 76 pages, new abstract and few typos corrected. The second author has changed nam

    Extremely narrow spectrum of GRB110920A: further evidence for localised, subphotospheric dissipation

    Full text link
    Much evidence points towards that the photosphere in the relativistic outflow in GRBs plays an important role in shaping the observed MeV spectrum. However, it is unclear whether the spectrum is fully produced by the photosphere or whether a substantial part of the spectrum is added by processes far above the photosphere. Here we make a detailed study of the γ\gamma-ray emission from single pulse GRB110920A which has a spectrum that becomes extremely narrow towards the end of the burst. We show that the emission can be interpreted as Comptonisation of thermal photons by cold electrons in an unmagnetised outflow at an optical depth of τ20\tau \sim 20. The electrons receive their energy by a local dissipation occurring close to the saturation radius. The main spectral component of GRB110920A and its evolution is thus, in this interpretation, fully explained by the emission from the photosphere including localised dissipation at high optical depths.Comment: 14 pages, 11 figures, accepted to MNRA

    Categorization of indoor places by combining local binary pattern histograms of range and reflectance data from laser range finders

    Get PDF
    This paper presents an approach to categorize typical places in indoor environments using 3D scans provided by a laser range finder. Examples of such places are offices, laboratories, or kitchens. In our method, we combine the range and reflectance data from the laser scan for the final categorization of places. Range and reflectance images are transformed into histograms of local binary patterns and combined into a single feature vector. This vector is later classified using support vector machines. The results of the presented experiments demonstrate the capability of our technique to categorize indoor places with high accuracy. We also show that the combination of range and reflectance information improves the final categorization results in comparison with a single modality

    Adaptive grid methods for Q-tensor theory of liquid crystals : a one-dimensional feasibility study

    Get PDF
    This paper illustrates the use of moving mesh methods for solving partial differential equation (PDE) problems in Q-tensor theory of liquid crystals. We present the results of an initial study using a simple one-dimensional test problem which illustrates the feasibility of applying adaptive grid techniques in such situations. We describe how the grids are computed using an equidistribution principle, and investigate the comparative accuracy of adaptive and uniform grid strategies, both theoretically and via numerical examples

    Finite Automata for the Sub- and Superword Closure of CFLs: Descriptional and Computational Complexity

    Full text link
    We answer two open questions by (Gruber, Holzer, Kutrib, 2009) on the state-complexity of representing sub- or superword closures of context-free grammars (CFGs): (1) We prove a (tight) upper bound of 2O(n)2^{\mathcal{O}(n)} on the size of nondeterministic finite automata (NFAs) representing the subword closure of a CFG of size nn. (2) We present a family of CFGs for which the minimal deterministic finite automata representing their subword closure matches the upper-bound of 22O(n)2^{2^{\mathcal{O}(n)}} following from (1). Furthermore, we prove that the inequivalence problem for NFAs representing sub- or superword-closed languages is only NP-complete as opposed to PSPACE-complete for general NFAs. Finally, we extend our results into an approximation method to attack inequivalence problems for CFGs

    Conical square function estimates in UMD Banach spaces and applications to H-infinity functional calculi

    Full text link
    We study conical square function estimates for Banach-valued functions, and introduce a vector-valued analogue of the Coifman-Meyer-Stein tent spaces. Following recent work of Auscher-McIntosh-Russ, the tent spaces in turn are used to construct a scale of vector-valued Hardy spaces associated with a given bisectorial operator (A) with certain off-diagonal bounds, such that (A) always has a bounded (H^{\infty})-functional calculus on these spaces. This provides a new way of proving functional calculus of (A) on the Bochner spaces (L^p(\R^n;X)) by checking appropriate conical square function estimates, and also a conical analogue of Bourgain's extension of the Littlewood-Paley theory to the UMD-valued context. Even when (X=\C), our approach gives refined (p)-dependent versions of known results.Comment: 28 pages; submitted for publicatio
    corecore