991 research outputs found

    Stochastic simplified modelling of abrasive waterjet footprints

    Get PDF
    Abrasive micro-waterjet processing is a non-conventional machining method that can be used to manufacture complex shapes in difficult-to-cut materials. Predicting the effect of the jet on the surface for a given set of machine parameters is a key element of controlling the process. However, the noise of the process is significant, making it difficult to design reliable jet-path strategies that produce good quality parts via controlled-depth milling. The process is highly unstable and has a strong random component that can affect the quality of the workpiece, especially in the case of controlled-depth milling. This study describes a method to predict the variability of the jet footprint for different jet feed speeds. A stochastic partial differential equation is used to describe the etched surface as the jet is moved over it, assuming that the erosion process can be divided into two main components: a deterministic part that corresponds to the average erosion of the jet, and a stochastic part that accounts for the noise generated at different stages of the process. The model predicts the variability of the trench profiles to within<8%. These advances could enable abrasive micro-waterjet technology as a suitable technology for controlled-depth milling

    STUDY CONCERNING THE HONEY QUALITIES IN TRANSYLVANIA REGION

    Get PDF
    The sources of micro-organisms (yeasts and fungi) found in honey are nectar andpollen, honey processing areas, equipments that have not been properly cleaned or wrappings. There are few types of yeast in honey and the most common are Saccharomyces melis, whichgrows in media with water content over 20-25% and Saccharomyces rosei, which can ferment inmedia with 60% carbohydrates. Yeasts can produce microbiological faults in honey with more than102 cells /g honey, stored at temperatures over 15 0C (Sindilar, E., 2000). Fungi can come from dust contamination, from the water with which installations orcontainers are washed and to a smaller degree, they can come from the honeybees. If they arefound in honey in a vegetative state, they can metabolise carbohydrates, amino-acids and evenpollen, causing various organoleptic changes (taste and smell of mildew). The present paper is a comparative microbiological and physical-chemical analysis ofvarious types of honey (polyfloral, tilia, acacia, sunflower, and honeydew) collected frombeekeepers The results have enabled us to make correlations between moisture, acidity, pH and themicrobiological characteristics of the tested honey samples and processors.quality, product quality, honey quality

    On-the-fly laser machining: a case study for in situ balancing of rotative parts

    Get PDF
    On-the-fly laser machining is defined as a process that aims to generate pockets/patches on target components that are rotated or moved at a constant velocity. Since it is a nonintegrated process (i.e., linear/rotary stage system moving the part is independent of that of the laser), it can be deployed to/into large industrial installations to perform in situ machining, i.e., without the need of disassembly. This allows a high degree of flexibility in its applications (e.g., balancing) and can result in significant cost savings for the user (e.g., no dis(assembly) cost). This paper introduces the concept of on-the-fly laser machining encompassing models for generating user-defined ablated features as well as error budgeting to understand the sources of errors on this highly dynamic process. Additionally, the paper presents laser pulse placement strategies aimed at increasing the surface finish of the targeted component by reducing the area surface roughness that are possible for on-the-fly laser machining. The overall concept was validated by balancing a rotor system through ablation of different pocket shapes by the use of a Yb:YAG pulsed fiber laser. In this respect, first, two different laser pulse placement strategies (square and hexagonal) were introduced in this research and have been validated on Inconel 718 target material; thus, it was concluded that hexagonal pulse placement reduces surface roughness by up to 17% compared to the traditional square laser pulse placement. The concept of on-the-fly laser machining has been validated by ablating two different features (4 × 60 mm and 12 × 4 mm) on a rotative target part at constant speed (100 rpm and 86 rpm) with the scope of being balanced. The mass removal of the ablated features to enable online balancing has been achieved within < 4 mg of the predicted value. Additionally, the error modeling revealed that most of the uncertainties in the dimensions of the feature/pocket originate from the stability of the rotor speed, which led to the conclusion that for the same mass of material to be removed it is advisable to ablate features (pockets) with longer circumferential dimensions, i.e., stretched and shallower pockets rather than compact and deep

    Towards understanding the cutting and fracture mechanism in ceramic matrix composites

    Get PDF
    Ceramic Matrix Composites (CMCs) are increasingly used for the manufacture of high-value parts for several industries such as the aerospace, nuclear and automotive. Nevertheless, their heterogenic, anisotropic and brittle nature make difficult to characterise the machining process and therefore, an in-depth understanding of the cutting mechanics is needed. In this regard, this paper aims to understand the different behaviours of CMCs while employing orthogonal cutting. The first part of this article proposes a novel theoretical approach to explain the different types of cutting behaviours (fracture and shear cutting) based on the inelastic and orthotropic properties of the CMC's by using a high imaging system and measuring the cutting forces. The second part aims to understand the cutting and fracture mechanism by developing for the first time a specific analytical model for each of the three main orthotropic orientations, defined by the three main relative fibre orientations respect to the feed direction, which are found in cutting of CMCs. This is approached by the calculation of the specific cutting energy needed to fracture the CMC's during cutting (energy release rate, Gc) using fracture mechanics and cutting theories. This analytical model has been successfully validated for a Carbon/Carbon composite with the experimental data obtained for the brittle cutting and by introducing the concept of a rising R-curve in cutting models. Moreover, comparing the results obtained for the energy release rate for the brittle and semi-ductile mode, it is observed that the material experiences an important change in the energy release rate according to the brittle-to-semi-ductile transition occurring while reducing the depth of cut. Finally, a novel monitoring method based on the vibrations of the sample has been found successful to understand the type of crack formation appearing while cutting CMCs

    On-the-fly laser machining: a case study for in situ balancing of rotative parts

    Get PDF
    On-the-fly laser machining is defined as a process that aims to generate pockets/patches on target components that are rotated or moved at a constant velocity. Since it is a nonintegrated process (i.e., linear/rotary stage system moving the part is independent of that of the laser), it can be deployed to/into large industrial installations to perform in situ machining, i.e., without the need of disassembly. This allows a high degree of flexibility in its applications (e.g., balancing) and can result in significant cost savings for the user (e.g., no dis(assembly) cost). This paper introduces the concept of on-the-fly laser machining encompassing models for generating user-defined ablated features as well as error budgeting to understand the sources of errors on this highly dynamic process. Additionally, the paper presents laser pulse placement strategies aimed at increasing the surface finish of the targeted component by reducing the area surface roughness that are possible for on-the-fly laser machining. The overall concept was validated by balancing a rotor system through ablation of different pocket shapes by the use of a Yb:YAG pulsed fiber laser. In this respect, first, two different laser pulse placement strategies (square and hexagonal) were introduced in this research and have been validated on Inconel 718 target material; thus, it was concluded that hexagonal pulse placement reduces surface roughness by up to 17% compared to the traditional square laser pulse placement. The concept of on-the-fly laser machining has been validated by ablating two different features (4 × 60 mm and 12 × 4 mm) on a rotative target part at constant speed (100 rpm and 86 rpm) with the scope of being balanced. The mass removal of the ablated features to enable online balancing has been achieved within < 4 mg of the predicted value. Additionally, the error modeling revealed that most of the uncertainties in the dimensions of the feature/pocket originate from the stability of the rotor speed, which led to the conclusion that for the same mass of material to be removed it is advisable to ablate features (pockets) with longer circumferential dimensions, i.e., stretched and shallower pockets rather than compact and deep

    A study of surface swelling caused by graphitisation during pulsed laser ablation of carbon allotrope with high content of sp ³ bounds

    Get PDF
    Experiments and theory are employed to investigate the laser ablation of boron doped diamond and tetrahedral amorphous carbon using nanosecond pulses. For a single pulse at low values of fluence, the laser induces a swelling of the surface due to graphitisation, whilst a high level of fluence leads to recession of the surface due to vaporization. To understand and investigate the underlying phenomena during the diamond-laser interaction, a model has been developed to reliably and quickly predict the behaviour of the surface and the thickness of the heat affected zone. The model is based on conservation of heat and mass during the laser-workpiece interaction. It consists of a one-dimensional system of non-linear equations that models the material heating, evaporation, graphitisation and plasma shielding. There is excellent agreement between numerical and experimental results for the position of the interfaces up to a high laser fluence. This model is the first to investigate the ablation of diamond that is able to capture surface swelling due to the graphitisation of the diamond layer, the graphite thickness and the amount of ablated material within a single framework. Furthermore, the model provides a novel methodology to investigate the thermal stability of diamond-like carbon films. The activation energy for tetrahedral amorphous carbon is obtained using the model with an accuracy of 3.15+1.0−0.22 eV

    An investigation of highly accurate and precise robotic hole measurements using non-contact devices

    Get PDF
    Industrial robots arms are widely used in manufacturing industry because of their support for automation. However, in metrology, robots have had limited application due to their insufficient accuracy. Even using error compensation and calibration methods, robots are not effective for micrometre (μm) level metrology. Non-contact measurement devices can potentially enable the use of robots for highly accurate metrology. However, the use of such devices on robots has not been investigated. The research work reported in this paper explores the use of different non-contact measurement devices on an industrial robot. The aim is to experimentally investigate the effects of robot movements on the accuracy and precision of measurements. The focus has been on assessing the ability to accurately measure various geometric and surface parameters of holes despite the inherent inaccuracies of industrial robot. This involves the measurement of diameter, roundness and surface roughness. The study also includes scanning of holes for measuring internal features such as start and end point of a taper. Two different non-contact measurement devices based on different technologies are investigated. Furthermore, effects of eccentricity, vibrations and thermal variations are also assessed. The research contributes towards the use of robots for highly accurate and precise robotic metrology

    Displacements analysis of self-excited vibrations in turning

    Full text link
    The actual research deals with determining by a new protocol the necessary parameters considering a three-dimensional model to simulate in a realistic way the turning process on machine tool. This paper is dedicated to the experimental displacements analysis of the block tool / block workpiece with self-excited vibrations. In connexion with turning process, the self-excited vibrations domain is obtained starting from spectra of two accelerometers. The existence of a displacements plane attached to the tool edge point is revealed. This plane proves to be inclined compared to the machines tool axes. We establish that the tool tip point describes an ellipse. This ellipse is very small and can be considered as a small straight line segment for the stable cutting process (without vibrations). In unstable mode (with vibrations) the ellipse of displacements is really more visible. A difference in phase occurs between the tool tip displacements on the radial direction and on the cutting one. The feed motion direction and the cutting one are almost in phase. The values of the long and small ellipse axes (and their ratio) shows that these sizes are increasing with the feed rate value. The axis that goes through the stiffness center and the tool tip represents the maximum stiffness direction. The maximum (resp. minimum) stiffness axis of the tool is perpendicular to the large (resp. small) ellipse displacements axis. FFT analysis of the accelerometers signals allows to reach several important parameters and establish coherent correlations between tool tip displacements and the static - elastic characteristics of the machine tool components tested
    corecore