10 research outputs found

    Transcription of toll-like receptors 2, 3, 4 and 9, FoxP3 and Th17 cytokines in a susceptible experimental model of canine Leishmania infantum infection

    Get PDF
    Canine leishmaniosis (CanL) due to Leishmania infantum is a chronic zoonotic systemic disease resulting from complex interactions between protozoa and the canine immune system. Toll-like receptors (TLRs) are essential components of the innate immune system and facilitate the early detection of many infections. However, the role of TLRs in CanL remains unknown and information describing TLR transcription during infection is extremely scarce. The aim of this research project was to investigate the impact of L. infantum infection on canine TLR transcription using a susceptible model. The objectives of this study were to evaluate transcription of TLRs 2, 3, 4 and 9 by means of quantitative reverse transcription polymerase chain reaction (qRT-PCR) in skin, spleen, lymph node and liver in the presence or absence of experimental L. infantum infection in Beagle dogs. These findings were compared with clinical and serological data, parasite densities in infected tissues and transcription of IL-17, IL-22 and FoxP3 in different tissues in non-infected dogs (n = 10), and at six months (n = 24) and 15 months (n = 7) post infection. Results revealed significant down regulation of transcription with disease progression in lymph node samples for TLR3, TLR4, TLR9, IL-17, IL-22 and FoxP3. In spleen samples, significant down regulation of transcription was seen in TLR4 and IL-22 when both infected groups were compared with controls. In liver samples, down regulation of transcription was evident with disease progression for IL-22. In the skin, upregulation was seen only for TLR9 and FoxP3 in the early stages of infection. Subtle changes or down regulation in TLR transcription, Th17 cytokines and FoxP3 are indicative of the silent establishment of infection that Leishmania is renowned for. These observations provide new insights about TLR transcription, Th17 cytokines and Foxp3 in the liver, spleen, lymph node and skin in CanL and highlight possible markers of disease susceptibility in this model

    Higher Expression of CCL2, CCL4, CCL5, CCL21, and CXCL8 Chemokines in the Skin Associated with Parasite Density in Canine Visceral Leishmaniasis

    Get PDF
    Several previous studies correlated immunopathological aspects of canine visceral leishmaniasis (CVL) with tissue parasite load and/or the clinical status of the disease. Recently, different aspects of the immune response in Leishmania-infected dogs have been studied, particularly the profile of cytokines in distinct compartments. However, the role of chemokines in disease progression or parasite burdens of the visceralising species represents an important approach for understanding immunopathology in CVL. We found an increase in inflammatory infiltrate, which was mainly composed of mononuclear cells, in the skin of animals presenting severe forms of CVL and high parasite density. Our data also demonstrated that enhanced parasite density is positively correlated with the expression of CCL2, CCL4, CCL5, CCL21, and CXCL8. In contrast, there was a negative correlation between parasite density and CCL24 expression. These findings represent an advance in the knowledge of the involvement of skin inflammatory infiltrates in CVL and the systemic consequences and may contribute to developing a rational strategy for the design of new and more efficient prophylactic tools and immunological therapies against CVL

    Theranostic applications of phage display to control leishmaniasis: selection of biomarkers for serodiagnostics, vaccination, and immunotherapy

    No full text
    AbstractPhage display is a high-throughput subtractive proteomic technology used for the generation and screening of large peptide and antibody libraries. It is based on the selection of phage-fused surface-exposed peptides that recognize specific ligands and demonstrate desired functionality for diagnostic and therapeutic purposes. Phage display has provided unmatched tools for controlling viral, bacterial, fungal, and parasitic infections, and allowed identification of new therapeutic targets to treat cancer, metabolic diseases, and other chronic conditions. This review presents recent advancements in serodiagnostics and prevention of leishmaniasis -an important tropical parasitic disease- achieved using phage display for the identification of novel antigens with improved sensitivity and specificity. Our focus is on theranostics of visceral leishmaniasis with the aim to develop biomarker candidates exhibiting both diagnostic and therapeutic potential to fight this important, yet neglected, tropical disease

    Impact of LbSapSal Vaccine in Canine Immunological and Parasitological Features before and after Leishmania chagasi-Challenge

    No full text
    Dogs represent the most important domestic reservoir of L. chagasi (syn. L. infantum). A vaccine against canine visceral leishmaniasis (CVL) would be an important tool for decreasing the anxiety related to possible L. chagasi infection and for controlling human visceral leishmaniasis (VL). Because the sand fly salivary proteins are potent immunogens obligatorily co-deposited during transmission of Leishmania parasites, their inclusion in an anti-Leishmania vaccine has been investigated in past decades. We investigated the immunogenicity of the "LbSapSal" vaccine (L. braziliensis antigens, saponin as adjuvant, and Lutzomyia longipalpis salivary gland extract) in dogs at baseline (T0), during the post-vaccination protocol (T3rd) and after early (T90) and late (T885) times following L. chagasi-challenge. Our major data indicated that immunization with "LbSapSal" is able to induce biomarkers characterized by enhanced amounts of type I (tumor necrosis factor [TNF]-α, interleukin [IL]-12, interferon [IFN]-γ) cytokines and reduction in type II cytokines (IL-4 and TGF-β), even after experimental challenge. The establishment of a prominent pro-inflammatory immune response after "LbSapSal" immunization supported the increased levels of nitric oxide production, favoring a reduction in spleen parasitism (78.9%) and indicating long-lasting protection against L. chagasi infection. In conclusion, these results confirmed the hypothesis that the "LbSapSal" vaccination is a potential tool to control the Leishmania chagasi infection
    corecore