228 research outputs found
Mapped Adjoint Control Transformation for Low-Thrust Space Mission Design
Spacecraft trajectory optimization is an essential task in space mission design. The propulsion system of the spacecraft can affect the type of trajectories that can be realized by a spacecraft. In the past few decades, electric propulsion systems (with their characteristic high specific impulse values, but low thrust magnitudes) have revolutionized space trajectories. Low-thrust trajectory design can be converted into boundary-value problems, which are typically challenging to solve because of a small domain of convergence and lack of knowledge about the initial costates when indirect formalism of optimal control is adopted. Estimating missing values of the non-intuitive costates is an important step in solving the resulting boundary-value problems. In this thesis, the initial costates are obtained using two methods: 1) random initialization, and 2) when costate initial values are constrained to lie on a unit 8-dimensional hypersphere. Minimum-fuel trajectories are designed for a heliocentric maneuver from Earth to comet 67P/Churyumov–Gerasimenko. The two costate initialization methods are compared against each other in terms of the percent of convergence and accuracy of the results of the associated boundary-value problems. After this analysis, the Adjoint Control Transformation costate initialization method is considered. By leveraging costate vector mapping theorem, the method of Adjoint Control Transformation (ACT) is extended to alternative sets of coordinates/elements for solving low-thrust trajectory optimization problems, called Mapped Adjoint Control Transformation (MACT). The development of MACT is the main contribution of this thesis. In particular, this extension is applied to the set of modified equinoctial elements and an orbital element set based on the specific angular momentum and eccentricity vectors (h-e). The computational and robustness efficiency of the MACT method is compared against the traditionally used random initialization of costates by solving 1) interplanetary rendezvous maneuvers, 2) an Earth-centered, orbit-raising problem with and without the inclusion of J2 perturbation, and 3) an Earth-centered, orbit-raising problem with a relatively large number of revolutions around the central body. For the considered problems, numerical results indicate two to three times improvement in the percent of convergence of the resulting boundary-value problems when the MACT method is used compared to the random initialization method. Results also indicate that the h-e set is a contender and suitable choice for solving low-thrust trajectory optimization problems
Time-Triggered Reduced Desensitization Formulation For Solving Optimal Control Problems
Fuel-optimal trajectories are inherently sensitive to variations in model parameters, such as propulsion system thrust magnitude. This inherent sensitivity can lead to dispersions in cost-functional values, when model parameters have uncertainties. Desensitized optimal control aims at generating robust optimal solutions while taking into account uncertainties in the model parameters. While desensitization techniques typically apply along the entire flight time, this paper introduces a novel time-triggered desensitization mechanism by modifying a recently developed desensitization method -- the Reduced Desensitization Formulation (RDF). By selectively desensitizing over specific time intervals of trajectories, we demonstrate the improved optimality of desensitized trajectories. We investigate the effects of temporal desensitization on the final cost and trajectory by considering thrust magnitude uncertainty for two classes of low-thrust trajectory optimization problems: 1) minimum-fuel rendezvous maneuvers and 2) orbit-raising maneuvers. Results show that temporal desensitization can achieve similar dispersion levels to full mission desensitization with an improved final cost functional
Heterochromatin and the molecular mechanisms of 'parent-of-origin' effects in animals.
Twenty five years ago it was proposed that conserved components of constitutive heterochromatin assemble heterochromatinlike complexes in euchromatin and this could provide a general mechanism for regulating heritable (cell-to-cell) changes in gene expressibility. As a special case, differences in the assembly of heterochromatin-like complexes on homologous chromosomes might also regulate the parent-of-origin-dependent gene expression observed in placental mammals. Here, the progress made in the intervening period with emphasis on the role of heterochromatin and heterochromatin-like complexes in parent-of-origin effects in animals is reviewed
The food additive vanillic acid controls transgene expression in mammalian cells and mice
Trigger-inducible transcription-control devices that reversibly fine-tune transgene expression in response to molecular cues have significantly advanced the rational reprogramming of mammalian cells. When designed for use in future gene- and cell-based therapies the trigger molecules have to be carefully chosen in order to provide maximum specificity, minimal side-effects and optimal pharmacokinetics in a mammalian organism. Capitalizing on control components that enable Caulobacter crescentus to metabolize vanillic acid originating from lignin degradation that occurs in its oligotrophic freshwater habitat, we have designed synthetic devices that specifically adjust transgene expression in mammalian cells when exposed to vanillic acid. Even in mice transgene expression was robust, precise and tunable in response to vanillic acid. As a licensed food additive that is regularly consumed by humans via flavoured convenience food and specific fresh vegetable and fruits, vanillic acid can be considered as a safe trigger molecule that could be used for diet-controlled transgene expression in future gene- and cell-based therapies
Ajuba is required for Rac activation and maintenance of E-cadherin adhesion
A Rac–PAK1–Ajuba feedback loop stabilizes cadherin complexes via coordination of spatiotemporal signaling with actin remodeling at cell–cell contacts
Transformation induced by Ewing's sarcoma associated EWS/FLI-1 is suppressed by KRAB/FLI-1
Ewing's sarcoma is a childhood bone tumour with poor prognosis, most commonly associated with a t(11;22)(q24;q12) reciprocal translocation that fuses the EWS and FLI-1 genes, resulting in the production of an aberrant chimeric transcription factor EWS/FLI-1. To erucidate the mechanisms by which EWS/FLI-1 mediates transformation in mouse models, we have generated a murine Ews/Fli-1 fusion protein. We demonstrate that this protein transforms fibroblast celrs in vitro similar to human EWS/FLI-1 as demonstrated by serum and anchorage-independent growth, the formation of tumours in nude mice and elevation of the oncogenic marker c-myc. Furthermore, transformation of these cells was inhibited by a specific represser, KRAB/FLI-1. The KRAB/FLI-1 repressor also suppressed the tumorigenic phenotype of a human Ewing's sarcoma cell line. These findings suggest that the transformed phenotype of Ewing's sarcoma cells can be reversed by using the sequence-specific FLI-1-DNA-binding domain to target a gone repressor domain. The inhibition of EWS/FLI-1 is the first demonstration of the KRAB domain suppressing the action of an ETS factor. This approach provides potential avenues for the elucidation of the biological mechanisms of EWS/FLI-1 oncogenesis and the development of novel therapeutic strategies. © 2003 Cancer Research UK.link_to_subscribed_fulltex
Epigenetic Modification of TLRs in Leukocytes Is Associated with Increased Susceptibility to Salmonella enteritidis in Chickens
Toll-like receptors (TLRs) signaling pathways are the first lines in defense against Salmonella enteritidis (S. enteritidis) infection but the molecular mechanism underlying susceptibility to S. enteritidis infection in chicken remains unclear. SPF chickens injected with S. enteritidis were partitioned into two groups, one consisted of those from Salmonella-susceptible chickens (died within 5 d after injection, n = 6), the other consisted of six Salmonella-resistant chickens that survived for 15 d after injection. The present study shows that the bacterial load in susceptible chickens was significantly higher than that in resistant chickens and TLR4, TLR2-1 and TLR21 expression was strongly diminished in the leukocytes of susceptible chickens compared with those of resistant chickens. The induction of expression of pro-inflammatory cytokine genes, IL-6 and IFN-β, was greatly enhanced in the resistant but not in susceptible chickens. Contrasting with the reduced expression of TLR genes, those of the zinc finger protein 493 (ZNF493) gene and Toll-interacting protein (TOLLIP) gene were enhanced in the susceptible chickens. Finally, the expression of TLR4 in peripheral blood mononuclear cells (PBMCs) infected in vitro with S. enteritidis increased significantly as a result of treatment with 5-Aza-2-deoxycytidine (5-Aza-dc) while either 5-Aza-dc or trichostatin A was effective in up-regulating the expression of TLR21 and TLR2-1. DNA methylation, in the predicted promoter region of TLR4 and TLR21 genes, and an exonic CpG island of the TLR2-1 gene was significantly higher in the susceptible chickens than in resistant chickens. Taken together, the results demonstrate that ZNF493-related epigenetic modification in leukocytes probably accounts for increased susceptibility to S. enteritidis in chickens by diminishing the expression and response of TLR4, TLR21 and TLR2-1
Windei, the Drosophila Homolog of mAM/MCAF1, Is an Essential Cofactor of the H3K9 Methyl Transferase dSETDB1/Eggless in Germ Line Development
The epigenetic regulation of gene expression by the covalent modification of histones is a fundamental mechanism required for the proper differentiation of germ line cells during development. Trimethylation of histone 3 lysine 9 (H3K9me3) leads to chromatin silencing and the formation of heterochromatin by recruitment of heterochromatin protein 1 (HP1). dSETDB1/Eggless (Egg), the ortholog of the human methyltransferase SETDB1, is the only essential H3K9 methyltransferase in Drosophila and is required for H3K9 trimethylation in the female germ line. Here we show that Windei (Wde), the Drosophila homolog of mouse mAM and human MCAF1, is an essential cofactor of Egg required for its nuclear localization and function in female germ line cells. By deletion analysis combined with coimmunoprecipitation, we have identified the protein regions in Wde and Egg that are necessary and sufficient for the interaction between the two proteins. We furthermore identified a region of Egg that gets covalently modified by SUMOylation, which may facilitate the formation of higher order chromatin-modifying complexes. Together with Egg, Wde localizes to euchromatin, is enriched on chromosome 4, and binds to the Painting of fourth (POF) protein. Our data provide the first genetic and phenotypic analysis of a mAM/MCAF1 homolog in a model organism and demonstrate its essential function in the survival of germ line cells
The RNA Helicase Rm62 Cooperates with SU(VAR)3-9 to Re-Silence Active Transcription in Drosophila melanogaster
Gene expression is highly dynamic and many genes show a wide range in expression over several orders of magnitude. This regulation is often mediated by sequence specific transcription factors. In addition, the tight packaging of DNA into chromatin can provide an additional layer of control resulting in a dynamic range of gene expression covering several orders of magnitude. During transcriptional activation, chromatin barriers have to be eliminated to allow an efficient progression of the RNA polymerase. This repressive chromatin structure has to be re-established quickly after it has been activated in order to tightly regulate gene activity. We show that the DExD/H box containing RNA helicase Rm62 is targeted to a site of rapid induction of transcription where it is responsible for an increased degree of methylation at H3K9 at the heat shock locus after removal of the heat shock stimulus. The RNA helicase interacts with the well-characterized histone methyltransferase SU(VAR)3-9 via its N-terminus, which provides a potential mechanism for the targeting of H3K9 methylation to highly regulated genes. The recruitment of SU(VAR)3-9 through interaction with a RNA helicase to a site of active transcription might be a general mechanism that allows an efficient silencing of highly regulated genes thereby enabling a cell to fine tune its gene activity over a wide range
- …
