440 research outputs found
Sustainable deltas in the Anthropocene
What are the possible trajectories of delta development over the coming decades? Trajectories will be determined by the interactions of biophysical trends such as changing sediment supplies, subsidence due to compaction of sediment and climate change, along with key socio-economic trends of migration and urbanisation, agricultural intensification, demographic transition, economic growth and structural change of the economy. Knowledge and understanding of plausible trajectories can inform management choices for deltas in the Anthropocene, including new policy perspectives and innovative adaptation. The emergence of visionary delta management plans in some large deltas, such as the Bangladesh Delta Plan 2100, is an important and necessary component. This chapter synthesises the state of knowledge and highlights key elements of science that will inform decisions on future management of deltas.<br/
A Novel Application of System Survival Signature in Reliability Assessment of Offshore Structures
© 2019, Springer Nature Switzerland AG. Offshore platforms are large structures consisting of a large number of components of various types. Thus a variety of methods are usually necessary to assess the structural reliability of these structures, ranging from Finite-Elements-methods to Monte-Carlo-Simulations. However, often reliability information is only available for the members and not for the overall, complex, system. The recently introduced survival signature provides a way to separate the structural analysis from the behaviour of the individual members. Thus it is then possible to use structural reliability methods to obtain information about how the failure of several constituent members of the offshore platform leads to overall system failure. This way it is possible to separate the structural from time-dependent information, allowing flexible and computationally efficient computation of reliability predictions
A developmental approach to predicting neuronal connectivity from small biological datasets: a gradient-based neuron growth model.
PMCID: PMC3931784 Open Access article: BB/G006652/1 and BB/G006369/1.Relating structure and function of neuronal circuits is a challenging problem. It requires demonstrating how dynamical patterns of spiking activity lead to functions like cognitive behaviour and identifying the neurons and connections that lead to appropriate activity of a circuit. We apply a "developmental approach" to define the connectome of a simple nervous system, where connections between neurons are not prescribed but appear as a result of neuron growth. A gradient based mathematical model of two-dimensional axon growth from rows of undifferentiated neurons is derived for the different types of neurons in the brainstem and spinal cord of young tadpoles of the frog Xenopus. Model parameters define a two-dimensional CNS growth environment with three gradient cues and the specific responsiveness of the axons of each neuron type to these cues. The model is described by a nonlinear system of three difference equations; it includes a random variable, and takes specific neuron characteristics into account. Anatomical measurements are first used to position cell bodies in rows and define axon origins. Then a generalization procedure allows information on the axons of individual neurons from small anatomical datasets to be used to generate larger artificial datasets. To specify parameters in the axon growth model we use a stochastic optimization procedure, derive a cost function and find the optimal parameters for each type of neuron. Our biologically realistic model of axon growth starts from axon outgrowth from the cell body and generates multiple axons for each different neuron type with statistical properties matching those of real axons. We illustrate how the axon growth model works for neurons with axons which grow to the same and the opposite side of the CNS. We then show how, by adding a simple specification for dendrite morphology, our model "developmental approach" allows us to generate biologically-realistic connectomes
Impairment of maturation of BMP-6 (35 kDa) correlates with delayed fracture healing in experimental diabetes
Background: Although it is known that diabetes interferes with fracture healing, the mechanisms remain poorly understood. The aim of this study was to investigate the correlation of BMP-6 and BMP-9 with the impairment in fracture healing in diabetes, by analyses of the difference in size and calcification of the callus, mechanical endurance, and expressing BMP-6 and BMP-9 in the callus, using a clinical related diabetic rodent model.Methods: We evaluated femur fracture healing by quantification of size and calcification of the callus by X-ray, histological and histochemical images, loading capacity of the fractured bone, and amount of BMP-6 in the callus and the bones using Western blot assay.Results: Significant upregulation of BMP-6 in the callus and the fractured bones of both non-diabetic and the diabetic animals was observed, at the end of the second and the fourth weeks after fracture. However, significantly lower levels of BMP-6 at 35 kDa with smaller sizes of calcified callus and poor loading capacity of the healing bones were detected in the diabetic animals, compared to the non-diabetic controls. The impairment of the maturation procedure of BMP-6 (35 kDa) from precursors may be underlying the downregulation of the BMP-6 in diabetic animals.Conclusions: It could be concluded that the delayed fracture healing in the diabetic animals is correlated with deficiency of BMP-6 (35 kDa), which may be caused by impairment of maturation procedure of BMP-6 from precursors to functioning format. This is a primary study but an important step to explore the molecular pathogenesis of impairment of fracture healing in diabetes and to molecular therapeutic approach for the impairment of fracture healing.</p
Methods for detection of horizontal transfer of transposable elements in complete genomes
Comparative Genomics of Cell Envelope Components in Mycobacteria
Mycobacterial cell envelope components have been a major focus of research due to their unique features that confer intrinsic resistance to antibiotics and chemicals apart from serving as a low-permeability barrier. The complex lipids secreted by Mycobacteria are known to evoke/repress host-immune response and thus contribute to its pathogenicity. This study focuses on the comparative genomics of the biosynthetic machinery of cell wall components across 21-mycobacterial genomes available in GenBank release 179.0. An insight into survival in varied environments could be attributed to its variation in the biosynthetic machinery. Gene-specific motifs like ‘DLLAQPTPAW’ of ufaA1 gene, novel functional linkages such as involvement of Rv0227c in mycolate biosynthesis; Rv2613c in LAM biosynthesis and Rv1209 in arabinogalactan peptidoglycan biosynthesis were detected in this study. These predictions correlate well with the available mutant and coexpression data from TBDB. It also helped to arrive at a minimal functional gene set for these biosynthetic pathways that complements findings using TraSH
Influence of Socioeconomic Status Trajectories on Innate Immune Responsiveness in Children
Lower socioeconomic status (SES) is consistently associated with poor health, yet little is known about the biological mechanisms underlying this inequality. In children, we examined the impact of early-life SES trajectories on the intensity of global innate immune activation, recognizing that excessive activation can be a precursor to inflammation and chronic disease.Stimulated interleukin-6 production, a measure of immune responsiveness, was analyzed ex vivo for 267 Canadian schoolchildren from a 1995 birth cohort in Manitoba, Canada. Childhood SES trajectories were determined from parent-reported housing data using a longitudinal latent-class modeling technique. Multivariate regression was conducted with adjustment for potential confounders.SES was inversely associated with innate immune responsiveness (p=0.003), with persistently low-SES children exhibiting responses more than twice as intense as their high-SES counterparts. Despite initially lower SES, responses from children experiencing increasing SES trajectories throughout childhood were indistinguishable from high-SES children. Low-SES effects were strongest among overweight children (p<0.01). Independent of SES trajectories, immune responsiveness was increased in First Nations children (p<0.05) and urban children with atopic asthma (p<0.01).These results implicate differential immune activation in the association between SES and clinical outcomes, and broadly imply that SES interventions during childhood could limit or reverse the damaging biological effects of exposure to poverty during the preschool years
Care Seeking for Neonatal Illness in Low- and Middle-Income Countries: A Systematic Review
Hadley Herbert and colleagues systematically review newborn care-seeking behaviors by caregivers in low- and middle-income countries
On extended dissipativity analysis for neural networks with time-varying delay and general activation functions
Evolution and diversity of Rickettsia bacteria
Background: Rickettsia are intracellular symbionts of eukaryotes that are best known for infecting and causing serious diseases in humans and other mammals. All known vertebrate-associated Rickettsia are vectored by arthropods as part of their life-cycle, and many other Rickettsia are found exclusively in arthropods with no known secondary host. However, little is known about the biology of these latter strains. Here, we have identified 20 new strains of Rickettsia from arthropods, and constructed a multi-gene phylogeny of the entire genus which includes these new strains.Results: We show that Rickettsia are primarily arthropod-associated bacteria, and identify several novel groups within the genus. Rickettsia do not co-speciate with their hosts but host shifts most often occur between related arthropods. Rickettsia have evolved adaptations including transmission through vertebrates and killing males in some arthropod hosts. We uncovered one case of horizontal gene transfer among Rickettsia, where a strain is a chimera from two distantly related groups, but multi-gene analysis indicates that different parts of the genome tend to share the same phylogeny.Conclusion: Approximately 150 million years ago, Rickettsia split into two main clades, one of which primarily infects arthropods, and the other infects a diverse range of protists, other eukaryotes and arthropods. There was then a rapid radiation about 50 million years ago, which coincided with the evolution of life history adaptations in a few branches of the phylogeny. Even though Rickettsia are thought to be primarily transmitted vertically, host associations are short lived with frequent switching to new host lineages. Recombination throughout the genus is generally uncommon, although there is evidence of horizontal gene transfer. A better understanding of the evolution of Rickettsia will help in the future to elucidate the mechanisms of pathogenicity, transmission and virulence
- …
