130 research outputs found
Self-stabilizing algorithms for Connected Vertex Cover and Clique decomposition problems
In many wireless networks, there is no fixed physical backbone nor
centralized network management. The nodes of such a network have to
self-organize in order to maintain a virtual backbone used to route messages.
Moreover, any node of the network can be a priori at the origin of a malicious
attack. Thus, in one hand the backbone must be fault-tolerant and in other hand
it can be useful to monitor all network communications to identify an attack as
soon as possible. We are interested in the minimum \emph{Connected Vertex
Cover} problem, a generalization of the classical minimum Vertex Cover problem,
which allows to obtain a connected backbone. Recently, Delbot et
al.~\cite{DelbotLP13} proposed a new centralized algorithm with a constant
approximation ratio of for this problem. In this paper, we propose a
distributed and self-stabilizing version of their algorithm with the same
approximation guarantee. To the best knowledge of the authors, it is the first
distributed and fault-tolerant algorithm for this problem. The approach
followed to solve the considered problem is based on the construction of a
connected minimal clique partition. Therefore, we also design the first
distributed self-stabilizing algorithm for this problem, which is of
independent interest
The Link between Genetic Factors in Children with Febrile Convulsions Appearance
The aim of this research paper is to reflect the link between genetic factors and presenting children with febrile convulsions.Keywords: febrile seizures, genetic factor, the pediatric clinic
Nitric oxide synthases and tubal ectopic pregnancies induced by Chlamydia infection: basic and clinical insights
Human ectopic pregnancy (EP) remains a common cause of pregnancy-related first trimester death. Nitric oxide (NO) is synthesized from L-arginine by three NO synthases (NOS) in different tissues, including the Fallopian tube. Studies of knockout mouse models have improved our understanding of the function of NOS isoforms in reproduction, but their roles and specific mechanisms in infection-induced tubal dysfunction have not been fully elucidated. Here, we provide an overview of the expression, regulation and possible function of NOS isoforms in the Fallopian tube, highlighting the effects of infection-induced changes in the tubal cellular microenvironment (imbalance of NO production) on tubal dysfunction and the potential involvement of NOS isoforms in tubal EP after Chlamydia trachomatis genital infection. The non-equivalent regulation of tubal NOS isoforms during the menstrual cycle suggests that endogenous ovarian steroid hormones regulate NOS in an isoform-specific manner. The current literature suggests that infection with C. trachomatis induces an inflammatory response that eventually leads to tubal epithelial destruction and functional impairment, caused by a high NO output mediated by inducible NOS (iNOS). Therefore, tissue-specific therapeutic approaches to suppress iNOS expression may help to prevent ectopic implantation in patients with prior C. trachomatis infection of the Fallopian tube
Role of Position 627 of PB2 and the Multibasic Cleavage Site of the Hemagglutinin in the Virulence of H5N1 Avian Influenza Virus in Chickens and Ducks
Highly pathogenic H5N1 avian influenza viruses have caused major disease outbreaks in domestic and free-living birds with transmission to humans resulting in 59% mortality amongst 564 cases. The mutation of the amino acid at position 627 of the viral polymerase basic-2 protein (PB2) from glutamic acid (E) in avian isolates to lysine (K) in human isolates is frequently found, but it is not known if this change affects the fitness and pathogenicity of the virus in birds. We show here that horizontal transmission of A/Vietnam/1203/2004 H5N1 (VN/1203) virus in chickens and ducks was not affected by the change of K to E at PB2-627. All chickens died between 21 to 48 hours post infection (pi), while 70% of the ducks survived infection. Virus replication was detected in chickens within 12 hours pi and reached peak titers in spleen, lung and brain between 18 to 24 hours for both viruses. Viral antigen in chickens was predominantly in the endothelium, while in ducks it was present in multiple cell types, including neurons, myocardium, skeletal muscle and connective tissues. Virus replicated to a high titer in chicken thrombocytes and caused upregulation of TLR3 and several cell adhesion molecules, which may explain the rapid virus dissemination and location of viral antigen in endothelium. Virus replication in ducks reached peak values between 2 and 4 days pi in spleen, lung and brain tissues and in contrast to infection in chickens, thrombocytes were not involved. In addition, infection of chickens with low pathogenic VN/1203 caused neuropathology, with E at position PB2-627 causing significantly higher infection rates than K, indicating that it enhances virulence in chickens
Progesterone level on the day of hCG administration in relation to the pregnancy rates of patients undergoing assisted reproduction techniques
Reproducibility and clinical significance of pre-ovulatory serum progesterone level and progesterone/estradiol ratio on the day of human chorionic gonadotropin administration in infertile women undergoing repeated in vitro fertilization cycles
Extensions of Deterministic and Stochastic Variable Structure Observers with Applications to Disturbance Minimization
Variable Structure Observers for Nonlinear Models with Unbounded Noise and Measurement Uncertainties
- …
