60 research outputs found

    Interaction between population and Enviromental Degradation

    Get PDF
    The present study investigates the long-run interrelationship among the demographic variables and environmental indicators by using the Johansen-Juselius cointegration technique and error correction model to determine the short-run dynamics of the system related to time series data for Pakistan economy, over the period 1972–2001. The paper finds the existence of a cointegrating vector, indicating a valid long-run relationship among the variables. Moreover, demographic variables have a significant effect in the short-run on AL but their short-run coefficients have an insignificant impact on CO2 emission. The empirical evidence clearly support that high population growth rates have a deleterious impact on environment. The policy implication thereof is to enhance the need of lowering population in Pakistan which seems to be a burden on the existing resources and a challenge to the environment.

    Interaction between Population and Environmental Degradation

    Get PDF
    Economic development and population growth in the poor areas of the earth is a subject of an essential concern for the environmental economists. Developing countries are facing and suffering by the serious problem of high population growth which is causing environmental degradation. A rapidly growing population exerts pressure on agricultural land and raises demand for food and shelter which encourages the conversion of forest land for agricultural and residential uses, now we know that growing population is a major cause of air, water, and solid waste pollution. The world population was 2.52 billion in the year 1950, which increased to 6.06 billion in 2000 and is likely to reach 8.3 billion by the year 2030. While the population size will remain almost stationary in the economically developed part of the world, around 1.2 billion, during the same period population is likely to grow in the less developed regions. This is likely to pose challenges for the economic growth and pressure on environmental resources in the developing countries. Furthermore, most of the population growth in the developing countries is likely to be concentrated in the urban areas. This has implication for increased demand for energy and water resources in the urban areas. This will also pose challenges for the management of increased solid waste, air and water pollution. One of the striking experiences of the developin

    Comparison of nutrients uptake in different varieties of rice in Pakistan

    Get PDF
    The objective of this research was to determine the uptake of different elements (K, Mg, Ca, Na, Fe, Co, Mn, Pb, Cu, Zn and Ni) which are used as nutrients by the rice crop. Different types of rice seeds KSK-282, KSK-134, BAS-515, IR6, BAS-2000, KSK-133 and super-BAS were collected from National Agricultural Research Centre (NARC) Islamabad Pakistan and grown in different plastic pots containing soil under the same condition. Ten days old immature plants of different varieties of rice were dried and their roots were separated from the whole plants. The dried roots were ground into fine powder followed by acid digestion (HNO , H SO and 3 2 4 HClO ) solution in a ratio of (5:1:0.1) individually. After digestion the solutions were filtered and the filtrates 4 were diluted by adding distilled water. The diluted solutions of all the above mentioned varieties of rice were analyzed by Atomic Absorption Spectrophotometer (AAS) for nutrients (K, Mg, Ca, Na, Fe, Co, Mn, Pb, Cu, Zn and Ni) concentration. The different values obtained from AAS had shown that some rice varieties had taken up nutrients (elements) in large amount (e.g., KSK-134 had taken up maximum Fe while KSK-133 had taken up minimum) as compared to other varieties. Similarly, several verities absorbed comparatively minimum concentration of elements. The results obtained in this research work clearly indicated that the absorption of these elements from the soil was dependent on the rice variety (e.g., BAS-2000 absorbed maximum Mg while minimum Super-BAS). Interestingly most of the rice vaities had absorbed the beneficial elements in large quantity as compared to other toxic elements

    Twenty-three unsolved problems in hydrology (UPH) – a community perspective

    Get PDF
    This paper is the outcome of a community initiative to identify major unsolved scientific problems in hydrology motivated by a need for stronger harmonisation of research efforts. The procedure involved a public consultation through online media, followed by two workshops through which a large number of potential science questions were collated, prioritised, and synthesised. In spite of the diversity of the participants (230 scientists in total), the process revealed much about community priorities and the state of our science: a preference for continuity in research questions rather than radical departures or redirections from past and current work. Questions remain focused on the process-based understanding of hydrological variability and causality at all space and time scales. Increased attention to environmental change drives a new emphasis on understanding how change propagates across interfaces within the hydrological system and across disciplinary boundaries. In particular, the expansion of the human footprint raises a new set of questions related to human interactions with nature and water cycle feedbacks in the context of complex water management problems. We hope that this reflection and synthesis of the 23 unsolved problems in hydrology will help guide research efforts for some years to come.publishedVersio

    Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Estimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period. Methods: 22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution. Findings: Global all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations. Interpretation: Global adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic

    Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021

    Get PDF
    BACKGROUND: Estimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period. METHODS: 22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution. FINDINGS: Global all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations. INTERPRETATION: Global adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic. FUNDING: Bill & Melinda Gates Foundation

    Assessment of Health Related Quality of Life Using EORTC QLQ BR-23 among Breast Cancer Patients in Pakistan

    Full text link
    Introduction: Pakistan has the highest rate of breast cancer among all other Asian countries.Late presentation of breast cancer negatively impact health related quality of life among patients.&#x0D; Objective: The present study was designed to assess health related quality of life using EORTC QLQ-BR23 among patients of breast cancer in Pakistan.&#x0D; Methodology: A descriptive cross sectional study design was used to assess health related quality of life among 382 breast cancer patients using EORTC QLQ-BR23. Data was collected and statistically analysed using SPSS version 21.&#x0D; Results: The results highlighted that the lowest scores for HRQoL were observed in the domain of functional scale i.e. sexual enjoyment (7.18, ±16.84) while highest scores were observed in the domains of body image (55.82, ±29.07) followed by systemic therapy side effects (50.88, ±18.47).&#x0D; Conclusion: The current study concluded poor HRQoL with a negative impact on its all domains among breast cancer patients in Pakistan. Lowest scores for HRQoL were observed in the domain of functional scale i.e. sexual enjoyment and sexual functioning while, highest scores were observed in the domains of body image followed by systemic therapy side effects.</jats:p

    Linking stakeholder scenarios and shared socioeconomic pathways for policy making in human-water systems

    No full text
    &amp;lt;p&amp;gt;Climate change has caused many environmental problems, as well as water and food insecurity, and health and social impacts in many parts of the world, and especially in the world&amp;amp;#8217;s vulnerable regions such as developing countries. Studies have demonstrated the impacts of socio-economic and climate changes and how they result in water and environmental problems at global and regional scales. Socio-economic variation and climatic change influence the dynamic interaction of human and water systems, and our ability to address environmental problems at sub-regional scales. From this perspective, the Shared Socio-economic Pathways (SSPs), as a form of alternative development scenarios, were recently introduced to help decision-makers to cope with uncertain futures and improve their policies for mitigation and adaptation to climate change. To take advantage of SSP scenarios for policy guidance at regional and national scales, it is necessary to explore the socio-economic feedbacks and water management policies informed by different sub-regional knowledge sharing through stakeholders&amp;amp;#8217; narratives. In this study, we link SSP scenarios developed with regional stakeholders using a coupled socio-economic and environmental model, in conjunction with stakeholder-generated narrative storylines for a sub-region of Pakistan. The framework allows for linking corresponding scenarios across different uncertainty levels to improve regional scale policy making, while providing knowledge regarding the future of human-water systems under a range of plausible future climate and socio-economic scenarios.&amp;lt;/p&amp;gt;</jats:p

    Participatory-Exploratory Modeling of Coupled Socio-Economic and Environmental Systems for Adaptive Management of Water Resources

    No full text
    &amp;lt;p&amp;gt;Water and environmental resources exist in complex and deeply uncertain systems of social-economic and environmental components.&amp;amp;#160; As such, natural resource systems are impacted simultaneously by the diverse effects of many interacting human-environmental components. While conventional environmental planning commonly stresses estimation and prediction, preferring top-down initiatives and technocratic solutions, this approach often overlooks socio-economic impacts and interactions, leading to unexpected long-term outcomes. In response, it is now widely acknowledged that frameworks capturing the complex dynamics of society and the environment are needed to develop more sustainable environmental and water resources management strategies. Moreover, for robust policy-making, the performances of potential policies must be considered under multiple plausible conditions to enhance the chances of desired outcomes and limit the risk of undesirable results. This research addresses these challenges by considering deep uncertainty in coupled socio-economic and environmental systems. &amp;amp;#160;In this study, a computational model-based approach to support adaptive decision-making under deep uncertainty is developed and applied to adaptive policy-making of sustainable water resources management for human-water systems in developing countries. The Rechna Doab region of Pakistan is considered as a case study. Qualitative-quantitative participatory exploratory modeling is performed by incorporating a physical-socioeconomic system dynamics model, a systematic scenario selection method and a scenario discovery approach.&amp;amp;#160; The Driver-Pressure-State-Impact-Response (DPSIR) model is used through storytelling approaches to identify vulnerabilities in policy options in the coupled socio-economic and environmental system by considering its response to drivers, pressures, states, and impacts. Storytelling methods are used to develop qualitative storylines in order to support a detailed and stakeholder-led description of future adaptive management policies. The proposed methodology is used for systematic scenario discovery to uncover vulnerabilities across a range of possible futures and test the performance of stakeholder proposed policies. Also, the tradeoffs between water resources management alternatives, in terms of stakeholder objectives, and their robustness to deep uncertainty are assessed. The proposed approach simulates qualitative and quantitative cause-effect relationships between the environmental system and socio-economic interactions to assess candidate policies, their vulnerabilities and associated adaptive strategies.&amp;lt;/p&amp;gt; </jats:p
    corecore