8 research outputs found

    Investigation the effect of Graphene on The Morphology, Mechanical and Thermal properties of PLA/PMMA Blends

    Get PDF
    In this work, Poly Lactic Acid/Poly methyl Methacrylate (PLA/PMMA) blends in various compositions prepared and morphology and properties of these blends was investigated. Moreover, the effect of adding different amounts of Graphene Nanoplatelets (GNP) on the morphology of the blends (by SEM), the interaction of nanopalates with polymer phases (by FTIR) and its effect on the mechanical properties and thermal stability of the samples were examined. The results of the study showed that in different amounts of graphene, these plates were preferentially located in the polymer phases dissimilarly and thus, caused the change of the blend morphology. In addition, measuring the mechanical properties by tensile test and results of thermal analysis by TGA indicated the improvement of thermal stability, modulus and mechanical strength and reduction of the elongation at break of graphene containing blends with increasing the loading of GNP. The changing behavior of the mechanical and thermal properties was proportional to the Graphene localization in blend phases

    Highly filled organoclay/phenolic resin nanocomposite as an ablative heat shield material

    Full text link

    Preparation and application of poly (hydroxyl ethyl methacrylate) nanocomposite hydrogels containing iron oxide nanoparticles as wound dressing

    Full text link
    In recent years, polymeric hydrogels are widespread in the field of biological materials such as wound dressing and wound care. In this work, we report for the first time the preparation and application of pHEMA nanocomposite hydrogels containing iron oxide nanoparticles as wound dressings. For this purpose, nanocomposite hydrogels based on poly (hydroxyl ethyl methacrylate) (pHEMA) and various amounts of 5, 10, and 15 wt% iron oxide nanoparticles were successfully prepared via radical polymerization. The structure and morphology of nanocomposite hydrogels were determined by Fourier transform infrared spectroscopy (FTIR) and field emission scanning electron microscope (FE-SEM), respectively. The results of gel fraction and the degree of swelling of hydrogels demonstrated that the gel percentage of pHEMA increased, and the degree of swelling decreased with increasing the percentage of nanoparticles. The WVRT and the porosity of hydrogels decreased by increasing the quantity of nanoparticles and were suitable for wound dressing applications. The effect of iron oxide nanoparticles on the mechanical properties of nanocomposite hydrogels was also studied using compression test and hardness shore A durometer. The results indicated that the compression strength, modulus, strain, and hardness are steadily increasing compared to pure hydrogel by adding nanoparticles. The maximum increase was obtained for a hydrogel sample with 15 wt% iron oxide nanoparticles. Antibacterial properties and biocompatibility were determined by the disk-diffusion and MTT assay methods, respectively. Based on the results, nanocomposite hydrogels exhibited higher percentages of cell survival and better antibacterial properties compared to pure pHEMA. </jats:p

    Investigation the effect of Graphene on The Morphology, Mechanical and Thermal properties of PLA/PMMA Blends

    No full text
    In this work, Poly Lactic Acid/Poly methyl Methacrylate (PLA/PMMA) blends in various compositions prepared and morphology and properties of these blends was investigated. Moreover, the effect of adding different amounts of Graphene Nanoplatelets (GNP) on the morphology of the blends (by SEM), the interaction of nanopalates with polymer phases (by FTIR) and its effect on the mechanical properties and thermal stability of the samples were examined. The results of the study showed that in different amounts of graphene, these plates were preferentially located in the polymer phases dissimilarly and thus, caused the change of the blend morphology. In addition, measuring the mechanical properties by tensile test and results of thermal analysis by TGA indicated the improvement of thermal stability, modulus and mechanical strength and reduction of the elongation at break of graphene containing blends with increasing the loading of GNP. The changing behavior of the mechanical and thermal properties was proportional to the Graphene localization in blend phases
    corecore