11,209 research outputs found
Comments on "Wall-plug (AC) power consumption of a very high energy e+/e- storage ring collider" by Marc Ross
The paper arXiv:1308.0735 questions some of the technical assumptions made by
the TLEP Steering Group when estimating in arXiv:1305.6498 the power
requirement for the very high energy e+e- storage ring collider TLEP. We show
that our assumptions are based solidly on CERN experience with LEP and the LHC,
as well accelerators elsewhere, and confirm our earlier baseline estimate of
the TLEP power consumption.Comment: 6 page
Liquid film thickness behaviour within a large diameter vertical 180° return bend
Experimental results of liquid film thickness distribution of an air–water mixture flowing through a vertical 180° return bend are reported. Measurements of liquid film thickness were achieved using flush mounted pin and parallel wire probes. The bend has a diameter of 127 mm and a curvature ratio (R/D) of 3. The superficial velocities of air ranged from 3.5 to 16.1 m/s and those for water from 0.02 to 0.2 m/s. At these superficial velocity ranges, the flow pattern investigated in this work focused on churn and annular flows. It was found that at liquid and gas superficial velocities of 0.02 m/s and 6.2 m/s, respectively, the averaged liquid film thickness peak at 90°. At gas superficial velocity of 16.1 m/s, the relationship between them is linear due to the shear forces overcoming gravity. Additionally, it was found that deposition of entrained droplets keeps the liquid film on the outside of the bend. The results of polar plots of average liquid film thickness in the bend showed that the distribution of the liquid film is not symmetrical with thicker films on the inside of the bend due to the action of gravity. Experimental results on average liquid film thickness showed good agreement with the simulation data reported in the literature
Top quark pair + jet production at next-to-leading order: NLO QCD corrections to gg -> t tbar g
The reaction pp/pbar p -> t tbar jet+X is an important background process for
Higgs boson searches in the mass range below 200 GeV. Apart from that it is
also an ideal laboratory for precision measurements in the top quark sector.
Both applications require a solid theoretical prediction, which can be achieved
only through a full next-to-leading order (NLO) calculation. In this work we
describe the NLO computation of the subprocess gg -> t tbar g.Comment: To appear in the proceedings of 7th DESY Workshop on Elementary
Particle Theory: Loops and Legs in Quantum Field Theory, Zinnowitz, Germany,
25-30 Apr 200
Flavor changing scalar couplings and production at hadron colliders
We calculate the contributions of the flavor changing scalar ()
couplings arised from topcolor-assisted technicolor () models at
tree-level to the and production at the Tevatron and
experiments. We find that the production cross sections are very small at the
Tevatron with , which is smaller than 5 fb in most of the
parameter space of models. However, the virtual effects of the
couplings on the production can be easily detected at the
with via the final state
().Comment: 10 pages,5 figure
Proceedings of the Workshop on Monte Carlo's, Physics and Simulations at the LHC PART II
These proceedings collect the presentations given at the first three meetings
of the INFN "Workshop on Monte Carlo's, Physics and Simulations at the LHC",
held at the Frascati National Laboratories in 2006. The first part of these
proceedings contains pedagogical introductions to several basic topics of both
theoretical and experimental high pT LHC physics. The second part collects more
specialised presentations.Comment: 157 pages, 136 figures; contribution by M. Grazzini has been adde
Network-mediated encoding of circadian time: The suprachiasmatic nucleus (SCN) from genes to neurons to circuits, and back
The transcriptional architecture of intracellular circadian clocks is similar across phyla, but in mammals interneuronal mechanisms confer a higher level of circadian integration. The suprachiasmatic nucleus (SCN) is a unique model to study these mechanisms, as it operates as a ∼24 h clock not only in the living animal, but also when isolated in culture. This “clock in a dish” can be used to address fundamental questions, such as how intraneuronal mechanisms are translated by SCN neurons into circuit-level emergent properties and how the circuit decodes, and responds to, light input. This review addresses recent developments in understanding the relationship between electrical activity, [Ca(2+)](i), and intracellular clocks. Furthermore, optogenetic and chemogenetic approaches to investigate the distinct roles of neurons and glial cells in circuit encoding of circadian time will be discussed, as well as the epigenetic and circuit-level mechanisms that enable the SCN to translate light input into coherent daily rhythms
TLR7-mediated skin inflammation remotely triggers chemokine expression and leukocyte accumulation in the brain
Background:
The relationship between the brain and the immune system has become increasingly topical as, although it is immune-specialised, the CNS is not free from the influences of the immune system. Recent data indicate that peripheral immune stimulation can significantly affect the CNS. But the mechanisms underpinning this relationship remain unclear. The standard approach to understanding this relationship has relied on systemic immune activation using bacterial components, finding that immune mediators, such as cytokines, can have a significant effect on brain function and behaviour. More rarely have studies used disease models that are representative of human disorders.
Methods:
Here we use a well-characterised animal model of psoriasis-like skin inflammation—imiquimod—to investigate the effects of tissue-specific peripheral inflammation on the brain. We used full genome array, flow cytometry analysis of immune cell infiltration, doublecortin staining for neural precursor cells and a behavioural read-out exploiting natural burrowing behaviour.
Results:
We found that a number of genes are upregulated in the brain following treatment, amongst which is a subset of inflammatory chemokines (CCL3, CCL5, CCL9, CXCL10, CXCL13, CXCL16 and CCR5). Strikingly, this model induced the infiltration of a number of immune cell subsets into the brain parenchyma, including T cells, NK cells and myeloid cells, along with a reduction in neurogenesis and a suppression of burrowing activity.
Conclusions:
These findings demonstrate that cutaneous, peripheral immune stimulation is associated with significant leukocyte infiltration into the brain and suggest that chemokines may be amongst the key mediators driving this response
Immunophenotyping and Efficacy of Low Dose ATG in Non-Sensitized Kidney Recipients Undergoing Early Steroid Withdrawal: A Randomized Pilot Study
Rabbit antithymocyte globulin (ATG) is commonly used as an induction therapy in renal transplant recipients, but the ideal dosage in tacrolimus-based early steroid withdrawal protocols has not been established. The purpose of this pilot study was to determine the immunophenotyping and efficacy of lower dose ATG in low immunological-risk kidney transplant recipients. In this prospective study, 45 patients were randomized (1∶1) to our standard dose ATG (total dose 3.75 mg/kg)(sATG) vs. lower dose 2.25 mg/kg (lowATG). All patients underwent early steroid withdrawal within 7 days. The primary end point was biopsy-proven acute rejection at 12 months. Prospective immunophenotyping of freshly isolated PBMCs was performed at baseline, 3, 6, 12 months post-transplant. The rate of acute rejection was 17% and 10% in the sATG and lowATG, respectively. Effector memory T cells, Tregs and recent thymic emigrants T cells had similar kinetics post-transplant in both groups. No statistically significant differences were found in graft survival, patient survival or infections between the two groups, though there was a non-significant increase in leukopenia (43%v s. 30%), CMV (8% vs. 0) and BK (4% vs. 0) infections in sATG group vs. lowATG. In sum, in low immunological risk kidney recipients undergoing steroid withdrawal, low dose ATG seems to be efficacious in preventing acute rejection and depleting T cells with potentially lower infectious complications. A larger study is warranted to confirm these findings. Trial Registration ClinicalTrials.gov NCT0054840
Recommended from our members
Factors associated with quality of life and mood in adults with strabismus
Background/Aims To explore the factors associated with the mood and quality of life (QoL) of patients with strabismus due to undergo realignment surgery. Methods A cross-sectional study was undertaken with adult patients. Along with demographic, clinical and psychosocial process variables, the Hospital Anxiety and Depression Scale and AS-20 QoL measures were administered. Regression models were used to identify the factors associated with QoL and mood. Results Of the 220 participants, 11% were experiencing clinical levels of depression, and 24% clinical anxiety. This is in line with other forms of facial disfigurement but higher than other chronic diseases. Although mood and QoL were associated with age and diplopia, it was beliefs and cognitions which were more consistently associated with well-being. This included feelings of social anxiety and avoidance, a belief that strabismus has negative consequences, poor understanding of strabismus, social support, fear of negative evaluation and the perceived visibility of their condition. Conclusions Psychosocial rather than clinical characteristics were identified as determinants of wellbeing in this population. It is important for clinicians planning surgery to be aware of these factors which could influence outcomes. Longitudinal studies need to be conducted to explore the direction of causality before interventions to improve well-being are developed and evaluated
- …
