50,381 research outputs found
A novel method to construct stationary solutions of the Vlasov-Maxwell system : the relativistic case
A method to derive stationary solutions of the relativistic Vlasov-Maxwell
system is explored. In the non-relativistic case, a method using the Hermite
polynomial series to describe the deviation from the Maxwell-Boltzmann
distribution is found to be successful in deriving a few stationary solutions
including two dimensional one. Instead of the Hermite polynomial series, two
special orthogonal polynomial series, which are appropriate to expand the
deviation from the Maxwell-J\"uttner distribution, are introduced in this
paper. By applying this method, a new two-dimensional equilibrium is derived,
which may provide an initial setup for investigations of three-dimensional
relativistic collisionless reconnection of magnetic fields.Comment: 15pages, 2 figures, to appear in Phys. Plasma
Exploratory investigation of sound pressure level in the wake of an oscillating airfoil in the vicinity of stall
Wind tunnel tests were performed on two oscillating two-dimensional lifting surfaces. The first of these models had an NACA 0012 airfoil section while the second simulated the classical flat plate. Both of these models had a mean angle of attack of 12 degrees while being oscillated in pitch about their midchord with a double amplitude of 6 degrees. Wake surveys of sound pressure level were made over a frequency range from 16 to 32 Hz and at various free stream velocities up to 100 ft/sec. The sound pressure level spectrum indicated significant peaks in sound intensity at the oscillation frequency and its first harmonic near the wake of both models. From a comparison of these data with that of a sound level meter, it is concluded that most of the sound intensity is contained within these peaks and no appreciable peaks occur at higher harmonics. It is concluded that within the wake the sound intensity is largely pseudosound while at one chord length outside the wake, it is largely true vortex sound. For both the airfoil and flat plate the peaks appear to be more strongly dependent upon the airspeed than on the oscillation frequency. Therefore reduced frequency does not appear to be a significant parameter in the generation of wake sound intensity
Texture transitions in the liquid crystalline alkyloxybenzoic acid 6OBAC
The 4,n-alkyloxybenzoic acid 6OBAC has a very rich variety of crystalline
structures and two nematic sub-phases, characterised by different textures. It
is a material belonging to a family of liquid crystals formed by hydrogen
bonded molecules, the 4,n-alkyloxybenzoic acids indicates the homologue
number). The homologues with n ranging from 7 to 13 display both smectic C and
N phases. In spite of the absence of a smectic phase, 6OBAC exhibits two
sub-phases with different textures, as it happens in other materials of the
homologue series which possess the smectic phase. This is the first material
that exhibits a texture transition in a nematic phase directly originated from
a crystal phase. Here we present the results of an image processing assisted
optical investigation to characterise the textures and the transitions between
textures. This processing is necessary to discriminate between crystal
modifications and nematic sub-phases.Comment: 12 pages, 10 figure
Following one's heart: cardiac rhythms gate central initiation of sympathetic reflexes
Central nervous processing of environmental stimuli requires integration of sensory information with ongoing autonomic control of cardiovascular function. Rhythmic feedback of cardiac and baroreceptor activity contributes dynamically to homeostatic autonomic control. We examined how the processing of brief somatosensory stimuli is altered across the cardiac cycle to evoke differential changes in bodily state. Using functional magnetic resonance imaging of brain and noninvasive beat-to-beat cardiovascular monitoring, we show that stimuli presented before and during early cardiac systole elicited differential changes in neural activity within amygdala, anterior insula and pons, and engendered different effects on blood pressure. Stimulation delivered during early systole inhibited blood pressure increases. Individual differences in heart rate variability predicted magnitude of differential cardiac timing responses within periaqueductal gray, amygdala and insula. Our findings highlight integration of somatosensory and phasic baroreceptor information at cortical, limbic and brainstem levels, with relevance to mechanisms underlying pain control, hypertension and anxiety
Groups 5 and 6 Terminal Hydrazido(2−) Complexes: N_β Substituent Effects on Ligand-to-Metal Charge-Transfer Energies and Oxidation States
Brightly colored terminal hydrazido(2−) (dme)MCl_3(NNR_2) (dme = 1,2-dimethoxyethane; M = Nb, Ta; R = alkyl, aryl) or (MeCN)WCl_4(NNR_2) complexes have been synthesized and characterized. Perturbing the electronic environment of the β (NR_2) nitrogen affects the energy of the lowest-energy charge-transfer (CT) transition in these complexes. For group 5 complexes, increasing the energy of the N_β lone pair decreases the ligand-to-metal CT (LMCT) energy, except for electron-rich niobium dialkylhydrazides, which pyramidalize N_β in order to reduce the overlap between the Nb═Nα π bond and the Nβ lone pair. For W complexes, increasing the energy of N_β eventually leads to reduction from formally [W^(VI)≡N–NR_2] with a hydrazido(2−) ligand to [W^(IV)═N═NR_2] with a neutral 1,1-diazene ligand. The photophysical properties of these complexes highlight the potential redox noninnocence of hydrazido ligands, which could lead to ligand- and/or metal-based redox chemistry in early transition metal derivatives
Kinetics of the reduction of metalloproteins by chromous ion
The reduction of Cu(330) in Rhus vernicifera laccase by chromous ion is 30% faster than reduction of Cu(614) at room temperature [pH 4.8, µ = 0.1 (NaCl)], and two parallel first-order paths, attributed to heterogeneity of the protein, are observed at both wavelengths. The reactions of stellacyanin, spinach and French-bean plastocyanins, and cytochrome c with chromous ion under similar conditions are faster than that with laccase by factors of 102 to 104, and are first order in protein concentration. Comparison of rates and activation parameters for the reduction of "blue" copper in laccase, stellacyanin, and the two plastocyanins indicates that reduction of the Cu(614) site in laccase may occur by intramolecular electron transfer from one of the Cu(330) sites. Our value of ΔH (17.4 kcal/mol) for the chromous ion reduction of cytochrome c is consistent with a mechanism in which major conformational changes in the protein must accompany electron transfer
Fluid-Induced Propulsion of Rigid Particles in Wormlike Micellar Solutions
In the absence of inertia, a reciprocal swimmer achieves no net motion in a
viscous Newtonian fluid. Here, we investigate the ability of a reciprocally
actuated particle to translate through a complex fluid that possesses a network
using tracking methods and birefringence imaging. A geometrically polar
particle, a rod with a bead on one end, is reciprocally rotated using magnetic
fields. The particle is immersed in a wormlike micellar (WLM) solution that is
known to be susceptible to the formation of shear bands and other localized
structures due to shear-induced remodeling of its microstructure. Results show
that the nonlinearities present in this WLM solution break time-reversal
symmetry under certain conditions, and enable propulsion of an artificial
"swimmer." We find three regimes dependent on the Deborah number (De): net
motion towards the bead-end of the particle at low De, net motion towards the
rod-end of the particle at intermediate De, and no appreciable propulsion at
high De. At low De, where the particle time-scale is longer then the fluid
relaxation time, we believe that propulsion is caused by an imbalance in the
fluid first normal stress differences between the two ends of the particle
(bead and rod). At De~1, however, we observe the emergence of a region of
network anisotropy near the rod using birefringence imaging. This anisotropy
suggests alignment of the micellar network, which is "locked in" due to the
shorter time-scale of the particle relative to the fluid
Nano-scale analysis of titanium dioxide fingerprint-development powders
Titanium dioxide based powders are regularly used in the development of latent fingerprints on dark surfaces. For analysis of prints on adhesive tapes, the titanium dioxide is suspended in a surfactant and used in the form of a small particle reagent (SPR). Analysis of commercially available products shows varying levels of effectiveness of print development, with some powders adhering to the background as well as the print. Scanning electron microscopy (SEM) images of prints developed with different powders show a range of levels of aggregation of particles.
Analytical transmission electron microscopy (TEM) of the fingerprint powder shows TiO2 particles with a surrounding coating, tens of nanometres thick, consisting of Al and Si rich material. X ray photoelectron spectroscopy (XPS) is used to determine the composition and chemical state of the surface of the powders; with a penetration depth of approximately 10nm, this technique demonstrates differing Ti: Al: Si ratios and oxidation states between the surfaces of different powders. Levels of titanium detected with this technique demonstrate variation in the integrity of the surface coating. The thickness, integrity and composition of the Al/Si-based coating is related to the level of aggregation of TiO2 particles and efficacy of print development
Vibrational exciton nanoimaging of phases and domains in porphyrin nanocrystals.
Much of the electronic transport, photophysical, or biological functions of molecular materials emerge from intermolecular interactions and associated nanoscale structure and morphology. However, competing phases, defects, and disorder give rise to confinement and many-body localization of the associated wavefunction, disturbing the performance of the material. Here, we employ vibrational excitons as a sensitive local probe of intermolecular coupling in hyperspectral infrared scattering scanning near-field optical microscopy (IR s-SNOM) with complementary small-angle X-ray scattering to map multiscale structure from molecular coupling to long-range order. In the model organic electronic material octaethyl porphyrin ruthenium(II) carbonyl (RuOEP), we observe the evolution of competing ordered and disordered phases, in nucleation, growth, and ripening of porphyrin nanocrystals. From measurement of vibrational exciton delocalization, we identify coexistence of ordered and disordered phases in RuOEP that extend down to the molecular scale. Even when reaching a high degree of macroscopic crystallinity, identify significant local disorder with correlation lengths of only a few nanometers. This minimally invasive approach of vibrational exciton nanospectroscopy and -imaging is generally applicable to provide the molecular-level insight into photoresponse and energy transport in organic photovoltaics, electronics, or proteins
A Markov chain model to enhanced the weather simulation capabilities of an operations and maintenance tool for a wave energy array
Operations and maintenance is a vital area of
research in the push to make wave energy a commercial reality.
A tool has previously been developed by Pelamis Wave Power to
obtain reliable estimates for operational expenditure and ensure
smooth running of wave energy arrays. Wave Energy Scotland is
now tasked with the future development of this operations and
maintenance tool. One of its key inputs is the wave and wind data
used to simulate weather windows suitable for marine access.
This paper details the creation and validation of a Markov Chain
Model to enhance the weather simulation capabilities of the tool.
This will ensure that the operations and maintenance strategy of
wave energy arrays is modelled more realistically, resulting in an
increased confidence in cost estimates and logistical
arrangements.The author would like to thank the academic supervisors
of this IDCORE project for their contributions, advice and
support. Similar thanks must go to the engineers, past and
present, who have dedicated their time to the Pelamis project.
The industrial supervisor deserves a special mention, without
her experience and guidance this study would not have been a
success. The author would also like the IDCORE programme
and its funding bodies, in particular the ETP (Energy
Technology Partnership), for their support
- …
