1,031 research outputs found
Gas-grain models for interstellar anion chemistry
Long-chain hydrocarbon anions CnH- (n=4, 6, 8) have recently been found to be
abundant in a variety of interstellar clouds. In order to explain their large
abundances in the denser (prestellar/protostellar) environments, new chemical
models are constructed that include gas-grain interactions. Models including
accretion of gas-phase species onto dust grains and cosmic-ray-induced
desorption of atoms are able to reproduce the observed anion-to-neutral ratios,
as well as the absolute abundances of anionic and neutral carbon chains, with a
reasonable degree of accuracy. Due to their destructive effects, the depletion
of oxygen atoms onto dust results in substantially greater polyyne and anion
abundances in high-density gas (with n_{H_2} >~ 10^5 cm^{-3}). The large
abundances of carbon-chain-bearing species observed in the envelopes of
protostars such as L1527 can thus be explained without the need for warm
carbon-chain chemistry. The C6H- anion-to-neutral ratio is found to be most
sensitive to the atomic O and H abundances and the electron density. Therefore,
as a core evolves, falling atomic abundances and rising electron densities are
found to result in increasing anion-to-neutral ratios. Inclusion of cosmic-ray
desorption of atoms in high-density models delays freeze-out, which results in
a more temporally-stable anion-to-neutral ratio, in better agreement with
observations. Our models include reactions between oxygen atoms and
carbon-chain anions to produce carbon-chain-oxide species C6O, C7O, HC6O and
HC7O, the abundances of which depend on the assumed branching ratios for
associative electron detachment
Single flux quantum circuits with damping based on dissipative transmission lines
We propose and demonstrate the functioning of a special Rapid Single Flux
Quantum (RSFQ) circuit with frequency-dependent damping. This damping is
achieved by shunting individual Josephson junctions by pieces of open-ended RC
transmission lines. Our circuit includes a toggle flip-flop cell, Josephson
transmission lines transferring single flux quantum pulses to and from this
cell, as well as DC/SFQ and SFQ/DC converters. Due to the desired
frequency-dispersion in the RC line shunts which ensures sufficiently low noise
at low frequencies, such circuits are well-suited for integrating with the
flux/phase Josephson qubit and enable its efficient control.Comment: 6 pages incl. 6 figure
Spatial organization in cyclic Lotka-Volterra systems
We study the evolution of a system of interacting species which mimics
the dynamics of a cyclic food chain. On a one-dimensional lattice with N<5
species, spatial inhomogeneities develop spontaneously in initially homogeneous
systems. The arising spatial patterns form a mosaic of single-species domains
with algebraically growing size, , where
(1/2) and 1/3 for N=3 with sequential (parallel) dynamics and N=4,
respectively. The domain distribution also exhibits a self-similar spatial
structure which is characterized by an additional length scale, , with and 2/3 for N=3 and 4, respectively. For
, the system quickly reaches a frozen state with non interacting
neighboring species. We investigate the time distribution of the number of
mutations of a site using scaling arguments as well as an exact solution for
N=3. Some possible extensions of the system are analyzed.Comment: 18 pages, 10 figures, revtex, also available from
http://arnold.uchicago.edu/~ebn
Connecting Berry's phase and the pumped charge in a Cooper pair pump
The properties of the tunnelling-charging Hamiltonian of a Cooper pair pump
are well understood in the regime of weak and intermediate Josephson coupling,
i.e. when . It is also known that
Berry's phase is related to the pumped charge induced by the adiabatical
variation of the eigenstates. We show explicitly that pumped charge in Cooper
pair pump can be understood as a partial derivative of Berry's phase with
respect to the phase difference across the array. The phase fluctuations
always present in real experiments can also be taken into account, although
only approximately. Thus the measurement of the pumped current gives reliable,
yet indirect, information on Berry's phase. As closing remarks, we give the
differential relation between Berry's phase and the pumped charge, and state
that the mathematical results are valid for any observable expressible as a
partial derivative of the Hamiltonian.Comment: 5 pages, 5 figures, RevTeX, Presentation has been clarifie
Differential influence of vemurafenib and dabrafenib on patients' lymphocytes despite similar clinical efficacy in melanoma
In this study, we demonstrate that vemurafenib but not dabrafenib reduces peripheral lymphocyte counts in melanoma patients while both agents show similar clinical efficacy. Within the lymphocyte compartment, vemurafenib selectively decreases circulating CD4+ T cells and changes their phenotype and function. This indicates that selective BRAFi need to be assessed individually for immunomodulatory effects, especially, when planning combinations with immunotherapie
Excitation and Abundance of C3 in star forming cores:Herschel/HIFI observations of the sight-lines to W31C and W49N
We present spectrally resolved observations of triatomic carbon (C3) in
several ro-vibrational transitions between the vibrational ground state and the
low-energy nu2 bending mode at frequencies between 1654-1897 GHz along the
sight-lines to the submillimeter continuum sources W31C and W49N, using
Herschel's HIFI instrument. We detect C3 in absorption arising from the warm
envelope surrounding the hot core, as indicated by the velocity peak position
and shape of the line profile. The sensitivity does not allow to detect C3
absorption due to diffuse foreground clouds. From the column densities of the
rotational levels in the vibrational ground state probed by the absorption we
derive a rotation temperature (T_rot) of ~50--70 K, which is a good measure of
the kinetic temperature of the absorbing gas, as radiative transitions within
the vibrational ground state are forbidden. It is also in good agreement with
the dust temperatures for W31C and W49N. Applying the partition function
correction based on the derived T_rot, we get column densities N(C3)
~7-9x10^{14} cm^{-2} and abundance x(C3)~10^{-8} with respect to H2. For W31C,
using a radiative transfer model including far-infrared pumping by the dust
continuum and a temperature gradient within the source along the line of sight
we find that a model with x(C3)=10^{-8}, T_kin=30-50 K, N(C3)=1.5 10^{15}
cm^{-2} fits the observations reasonably well and provides parameters in very
good agreement with the simple excitation analysis.Comment: Accepted for publication in Astronomy and Astrophysics (HIFI first
results issue
A new view of electrochemistry at highly oriented pyrolytic graphite
Major new insights on electrochemical processes at graphite electrodes are reported, following extensive investigations of two of the most studied redox couples, Fe(CN)64–/3– and Ru(NH3)63+/2+. Experiments have been carried out on five different grades of highly oriented pyrolytic graphite (HOPG) that vary in step-edge height and surface coverage. Significantly, the same electrochemical characteristic is observed on all surfaces, independent of surface quality: initial cyclic voltammetry (CV) is close to reversible on freshly cleaved surfaces (>400 measurements for Fe(CN)64–/3– and >100 for Ru(NH3)63+/2+), in marked contrast to previous studies that have found very slow electron transfer (ET) kinetics, with an interpretation that ET only occurs at step edges. Significantly, high spatial resolution electrochemical imaging with scanning electrochemical cell microscopy, on the highest quality mechanically cleaved HOPG, demonstrates definitively that the pristine basal surface supports fast ET, and that ET is not confined to step edges. However, the history of the HOPG surface strongly influences the electrochemical behavior. Thus, Fe(CN)64–/3– shows markedly diminished ET kinetics with either extended exposure of the HOPG surface to the ambient environment or repeated CV measurements. In situ atomic force microscopy (AFM) reveals that the deterioration in apparent ET kinetics is coupled with the deposition of material on the HOPG electrode, while conducting-AFM highlights that, after cleaving, the local surface conductivity of HOPG deteriorates significantly with time. These observations and new insights are not only important for graphite, but have significant implications for electrochemistry at related carbon materials such as graphene and carbon nanotubes
Firm heterogeneity and wages under different bargaining regimes : does a centralised union care for low-productivity firms?
This paper studies the relationship between wages and the degree of firm heterogeneity in a given industry under different wage setting structures. To derive testable hypotheses, we set up a theoretical model that analyses the sensitivity of wages to the variability in productivity conditions in a unionsised oligopoly framework. The model distinguishes centralised and decentralised wage determination. The theoretical results predict wages to be negatively associated with the degree of firm heterogeneity under centralised wage-setting, as unions internalise negative externalities of a wage increase for low-productivity firms. We test this prediction using a linked employeremployee panel data set from the German mining and manufacturing sector. Consistent with our hypotheses, the empirical results suggest that under industry-level bargaining workers in more heterogeneous sectors receive lower wages than workers in more homogeneous sectors. In contrast, the degree of firm heterogeneity is found to have no negative impact on wages in uncovered firms and under firm-level contracts
The Minimum-Uncertainty Squeezed States for for Atoms and Photons in a Cavity
We describe a six-parameter family of the minimum-uncertainty squeezed states
for the harmonic oscillator in nonrelativistic quantum mechanics. They are
derived by the action of corresponding maximal kinematical invariance group on
the standard ground state solution. We show that the product of the variances
attains the required minimum value 1/4 only at the instances that one variance
is a minimum and the other is a maximum, when the squeezing of one of the
variances occurs. The generalized coherent states are explicitly constructed
and their Wigner function is studied. The overlap coefficients between the
squeezed, or generalized harmonic, and the Fock states are explicitly evaluated
in terms of hypergeometric functions. The corresponding photons statistics are
discussed and some applications to quantum optics, cavity quantum
electrodynamics, and superfocusing in channeling scattering are mentioned.
Explicit solutions of the Heisenberg equations for radiation field operators
with squeezing are found.Comment: 27 pages, no figures, 174 references J. Phys. B: At. Mol. Opt. Phys.,
Special Issue celebrating the 20th anniversary of quantum state engineering
(R. Blatt, A. Lvovsky, and G. Milburn, Guest Editors), May 201
Nitrogen hydrides in interstellar gas: Herschel/HIFI observations towards G10.6-0.4 (W31C)
The HIFI instrument on board the Herschel Space Observatory has been used to
observe interstellar nitrogen hydrides along the sight-line towards G10.6-0.4
in order to improve our understanding of the interstellar chemistry of
nitrogen. We report observations of absorption in NH N=1-0, J=2-1 and ortho-NH2
1_1,1-0_0,0. We also observed ortho-NH3 1_0-0_0, and 2_0-1_0, para-NH3 2_1-1_1,
and searched unsuccessfully for NH+. All detections show emission and
absorption associated directly with the hot-core source itself as well as
absorption by foreground material over a wide range of velocities. All spectra
show similar, non-saturated, absorption features, which we attribute to diffuse
molecular gas. Total column densities over the velocity range 11-54 km/s are
estimated. The similar profiles suggest fairly uniform abundances relative to
hydrogen, approximately 6*10^-9, 3*10^-9, and 3*10^-9 for NH, NH2, and NH3,
respectively. These abundances are discussed with reference to models of
gas-phase and surface chemistry.Comment: 5 pages, 3 figures, 2 online pages with 2 figures. Accepted for
publication in A&A July 6 (Herschel/HIFI special issue
- …
