38,093 research outputs found
New Two-Dimensional Models of Supernova Explosions by the Neutrino-Heating Mechanism: Evidence for Different Instability Regimes in Collapsing Stellar Cores
The neutrino-driven explosion mechanism for core-collapse supernovae in its
modern flavor relies on the additional support of hydrodynamical instabilities
in achieving shock revival. Two possible candidates, convection and the
so-called standing accretion shock instability (SASI), have been proposed for
this role. In this paper, we discuss new successful simulations of supernova
explosions that shed light on the relative importance of these two
instabilities. While convection has so far been observed to grow first in
self-consistent hydrodynamical models with multi-group neutrino transport, we
here present the first such simulation in which the SASI grows faster while the
development of convection is initially inhibited. We illustrate the features of
this SASI-dominated regime using an explosion model of a 27 solar mass
progenitor, which is contrasted with a convectively-dominated model of an 8.1
solar mass progenitor with subsolar metallicity, whose early post-bounce
behavior is more in line with previous 11.2 and 15 solar mass explosion models.
We analyze the conditions discriminating between the two different regimes,
showing that a high mass-accretion rate and a short advection time-scale are
conducive for strong SASI activity. We also briefly discuss some important
factors for capturing the SASI-driven regime, such as general relativity, the
progenitor structure, a nuclear equation of state leading to a compact
proto-neutron star, and the neutrino treatment. Finally, we evaluate possible
implications of our findings for 2D and 3D supernova simulations. Our results
show that a better understanding of the SASI and convection in the non-linear
regime is required.Comment: 12 pages, 13 figures; revised version accepted for publication in Ap
Resonant photon absorption in the low spin molecule V15
We report the first study of the micro-SQUID response of a molecular system
to electromagnetic radiation. The advantages of our micro-SQUID technique in
respect to pulsed electron paramagnetic resonance (EPR) techniques consist in
the possibility to perform time-resolved experiments (below 1 ns) on
submicrometer sizes samples (about 1000 spins) at low temperature (below 100
mK).
Resonant photon absorption in the GHz range was observed via low temperature
micro-SQUID magnetization measurements of the spin ground state S = 1/2 of the
molecular complex V15. The line-width essentially results from intra-molecular
hyperfine interaction. The results point out that observing Rabi oscillations
in molecular nanomagnets requires well isolated low spin systems and high
radiation power. Our first results open the way for time-resolved observations
of quantum superposition of spin-up and spin-down states in SMMs.Comment: 7 pages, 5 figure
Hamiltonian Dynamics of Yang-Mills Fields on a Lattice
We review recent results from studies of the dynamics of classical Yang-Mills
fields on a lattice. We discuss the numerical techniques employed in solving
the classical lattice Yang-Mills equations in real time, and present results
exhibiting the universal chaotic behavior of nonabelian gauge theories. The
complete spectrum of Lyapunov exponents is determined for the gauge group
SU(2). We survey results obtained for the SU(3) gauge theory and other
nonlinear field theories. We also discuss the relevance of these results to the
problem of thermalization in gauge theories.Comment: REVTeX, 51 pages, 20 figure
Color Transparency at COMPASS energies
Pionic quasielastic knockout of protons from nuclei at 200 GeV show very
large effects of color transparency as -t increases from 0 to several GeV^2.
Similar effects are expected for quasielastic photoproduction of vector mesons.Comment: 9 pages, 4 figure
Serum procalcitonin for discrimination of blood contamination from bloodstream infection due to coagulase-negative staphylococci
The diagnostic value of serum procalcitonin (PCT) to distinguish blood contamination from bloodstream infection (BSI) due to coagulase-negative staphylococci was evaluated. Patients with BSI had higher PCT concentration than those with blood contamination at day -1, day 0 and day +1 with regard to blood culture collection (p > 0.05), whereas serum C-reactive protein values were significantly higher only on day +1. At a cutoff of 0.1 ng/dl, PCT had a sensitivity of 86% and 100%, and a specificity of 60% and 80% for the diagnosis of BSI on day -1 and 0, respectively. In addition to clinical and microbiological parameters, PCT may help discriminating blood contamination from BSI due coagulase-negative staphylococci
Physical Properties of OSIRIS-REx Target Asteroid (101955) 1999 RQ36 derived from Herschel, ESO-VISIR and Spitzer observations
In September 2011, the Herschel Space Observatory performed an observation
campaign with the PACS photometer observing the asteroid (101955) 1999 RQ36 in
the far infrared. The Herschel observations were analysed, together with ESO
VLT-VISIR and Spitzer-IRS data, by means of a thermophysical model in order to
derive the physical properties of 1999 RQ36. We find the asteroid has an
effective diameter in the range 480 to 511 m, a slightly elongated shape with a
semi-major axis ratio of a/b=1.04, a geometric albedo of 0.045 +0.015/-0.012,
and a retrograde rotation with a spin vector between -70 and -90 deg ecliptic
latitude. The thermal emission at wavelengths below 12 micron -originating in
the hot sub-solar region- shows that there may be large variations in roughness
on the surface along the equatorial zone of 1999 RQ36, but further measurements
are required for final proof. We determine that the asteroid has a
disk-averaged thermal inertia of Gamma = 650 Jm-2s-0.5K-1 with a 3-sigma
confidence range of 350 to 950 Jm-2s-0.5K-1, equivalent to what is observed for
25143 Itokawa and suggestive that 1999 RQ36 has a similar surface texture and
may also be a rubble-pile in nature. The low albedo indicates that 1999 RQ36
very likely contains primitive volatile-rich material, consistent with its
spectral type, and that it is an ideal target for the OSIRIS-REx sample return
mission.Comment: Accepted for publication in Astronomy & Astrophysics, 9 pages, 7
figure
Serum Procalcitonin for Discrimination of Blood Contamination from Bloodstream Infection due to Coagulase-Negative Staphylococci
Abstract : The diagnostic value of serum procalcitonin (PCT) to distinguish blood contamination from bloodstream infection (BSI) due to coagulase-negative staphylococci was evaluated. Patients with BSI had higher PCT concentration than those with blood contamination at day -1, day 0 and day +1 with regard to blood culture collection (p < 0.05), whereas serum C-reactive protein values were significantly higher only on day +1. At a cutoff of 0.1 ng/dl, PCT had a sensitivity of 86% and 100%, and a specificity of 60% and 80% for the diagnosis of BSI on day -1 and 0, respectively. In addition to clinical and microbiological parameters, PCT may help discriminating blood contamination from BSI due coagulase-negative staphylococc
- …
