61,837 research outputs found

    Broadband study of blazar 1ES 1959+650 during flaring state in 2016

    Full text link
    Aim : The nearby TeV blazar 1ES 1959+650 (z=0.047) was reported to be in flaring state during June - July 2016 by Fermi-LAT, FACT, MAGIC and VERITAS collaborations. We studied the spectral energy distributions (SEDs) in different states of the flare during MJD 57530 - 57589 using simultaneous multiwaveband data to understand the possible broadband emission scenario during the flare. Methods : The UV/optical and X-ray data from UVOT and XRT respectively on board Swift and high energy γ\gamma-ray data from Fermi-LAT are used to generate multiwaveband lightcurves as well as to obtain high flux states and quiescent state SEDs. The correlation and lag between different energy bands is quantified using discrete correlation function. The synchrotron self Compton (SSC) model was used to reproduce the observed SEDs during flaring and quiescent states of the source. Results : A decent correlation is seen between X-ray and high energy γ\gamma-ray fluxes. The spectral hardening with increase in the flux is seen in X-ray band. The powerlaw index vs flux plot in γ\gamma-ray band indicates the different emission regions for 0.1 - 3 GeV and 3-300 GeV energy photons. Two zone SSC model satisfactorily fits the observed broadband SEDs. The inner zone is mainly responsible for producing synchrotron peak and high energy γ\gamma-ray part of the SED in all states. The second zone is mainly required to produce less variable optical/UV and low energy γ\gamma-ray emission. Conclusions : Conventional single zone SSC model does not satisfactorily explain broadband emission during observation period considered. There is an indication of two emission zones in the jet which are responsible for producing broadband emission from optical to high energy γ\gamma-rays.Comment: 11 pages, 12 figures, Accepted in A&

    Submillimeter polarisation and magnetic field properties in the envelopes of proto-planetary nebulae CRL 618 and OH 231.8+4.2

    Full text link
    We have carried out continuum and line polarisation observations of two Proto-planetary nebulae (PPNe), CRL 618 and OH 231.8+4.2, using the Submillimeter Array (SMA) in its compact configuration. The frequency range of observations, 330-345 GHz, includes the CO(J=3-2) line emission. CRL 618 and OH 231.8+4.2 show quadrupolar and bipolar optical lobes, respectively, surrounded by a dusty envelope reminiscent of their AGB phase. We report a detection of dust continuum polarised emission in both PPNe above 4 sigma but no molecular line polarisation detection above a 3 sigma limit. OH 231.8+4.2 is slightly more polarised on average than CRL 618 with a mean fractional polarisation of 4.3 and 0.3 per cent, respectively. This agrees with the previous finding that silicate dust shows higher polarisation than carbonaceous dust. In both objects, an anti-correlation between the fractional polarisation and the intensity is observed. Neither PPNe show a well defined toroidal equatorial field, rather the field is generally well aligned and organised along the polar direction. This is clearly seen in CRL 618 while in the case of OH 231.8+4.2, the geometry indicates an X-shaped structure coinciding overall with a dipole/polar configuration. However in the later case, the presence of a fragmented and weak toroidal field should not be discarded. Finally, in both PPNe, we observed that the well organised magnetic field is parallel with the major axis of the 12CO outflow. This alignment could indicate the presence of a magnetic outflow launching mechanism. Based on our new high resolution data we propose two scenarios to explain the evolution of the magnetic field in evolved stars.Comment: 11 pages, 8 figures and 1 table. Accepted for publication in the Monthly Notices of the Royal Astronomical Societ

    Growth of mango (Mangifera indica L.) rootstocks as influenced by pre-sowing treatments

    Get PDF
    An experiment was carried out at Navsari Agricultural University, Navsari during 2014 to evaluate the effect of pre-sowing treatments on survival percentage and growth of mango rootstocks. Mango stones were soaked in aqueous solutions of GA3 (100 and 200 ppm), Beejamruth (2 % and 3 %) and Thiourea (1 % and 2 %) for 12 and 24 hours. The trial was evaluated in Completely Randomized Design based on factorial concept and the treatments were replicated thrice. Imposition of treatments led to significant differences at 5 % level of significance for all parameters chosen in this study. Mango stones when treated with Thiourea at 1 % had the maximum shoot length (49.93 cm), root length (34.38 cm), shoot dry weight (21.08 g) and total dry weight (26.36 g). The highest number of lateral roots (10.90) and survival percentage (64.17) was observed in mango stones dipped in 100 ppm GA3. Between the two soaking duration, soaking mango stones for 24 hours recorded higher values for shoot length (45.03 cm), root length (32.79 cm), number of lateral roots (9.83), survival percentage (62.72), shoot root fresh weight ratio (4.30), shoot dry weight (21.33 g), total dry weight (26.28 g) and shoot root dry weight ratio (4.32). Thus, survival percentage and growth of mango rootstocks can be substantially improved by soaking mango stones in aqueous solutions of 100 ppm GA3 or Thiourea at 1 % for 24 hours before sowing

    Investigating the intrinsic noise limit of Dayem bridge NanoSQUIDs

    Get PDF
    NanoSQUIDs made from Nb thin films have been produced with nanometre loop sizes down to 200 nm, using weak-link junctions with dimensions less than 60 nm. These composite (W/Nb) single layer thin film devices, patterned by FIB milling, show extremely good low-noise performance ∼170 nΦ0 at temperatures between 5 and 8.5 K and can operate in rather high magnetic fields (at least up to 1 T). The devices produced so far have a limited operating temperature range, typically only 1–2 K. We have the goal of achieving operation at 4.2 K, to be compatible with the best SQUID series array (SSA) preamplifier available. Using the SSA to readout the nanoSQUIDs provides us with a means of investigating the intrinsic noise of the former. In this paper we report improved white noise levels of these nanoSQUIDs, enabling potential detection of a single electronic spin flip in a 1-Hz bandwidth. At low frequencies the noise performance is already limited by SSA preamplifier noise

    Weak gravitational lensing with the Square Kilometre Array

    Get PDF
    We investigate the capabilities of various stages of the SKA to perform world-leading weak gravitational lensing surveys. We outline a way forward to develop the tools needed for pursuing weak lensing in the radio band. We identify the key analysis challenges and the key pathfinder experiments that will allow us to address them in the run up to the SKA. We identify and summarize the unique and potentially very powerful aspects of radio weak lensing surveys, facilitated by the SKA, that can solve major challenges in the field of weak lensing. These include the use of polarization and rotational velocity information to control intrinsic alignments, and the new area of weak lensing using intensity mapping experiments. We show how the SKA lensing surveys will both complement and enhance corresponding efforts in the optical wavebands through cross-correlation techniques and by way of extending the reach of weak lensing to high redshift.Comment: 19 pages, 6 figures. Cosmology Chapter, Advancing Astrophysics with the SKA (AASKA14) Conference, Giardini Naxos (Italy), June 9th-13th 201
    corecore