1,154 research outputs found

    Assessing the UK policies for broadband adoption

    Get PDF
    Broadband technology has been introduced to the business community and the public as a rapid way of exploiting the Internet. The benefits of its use (fast reliable connections, and always on) have been widely realised and broadband diffusion is one of the items at the top of the agenda for technology related polices of governments worldwide. In this paper an examination of the impact of the UK government’s polices upon broadband adoption is undertaken. Based on institutional theory a consideration of the manipulation of supply push and demand pull forces in the diffusion of broadband is offered. Using primary and secondary data sources, an analysis of the specific institutional actions related to IT diffusion as pursued by the UK government in the case of broadband is provided. Bringing the time dimension into consideration it is revealed that the UK government has shifted its attention from supply push-only strategies to more interventional ones where the demand pull forces are also mobilised. It is believed that this research will assist in the extraction of the “success factors” in government intervention that support the diffusion of technology with a view to render favourable results if applied to other national settings

    On fundamental groups related to the Hirzebruch surface F_1

    Full text link
    Given a projective surface and a generic projection to the plane, the braid monodromy factorization (and thus, the braid monodromy type) of the complement of its branch curve is one of the most important topological invariants, stable on deformations. From this factorization, one can compute the fundamental group of the complement of the branch curve, either in C^2 or in CP^2. In this article, we show that these groups, for the Hirzebruch surface F_{1,(a,b)}, are almost-solvable. That is - they are an extension of a solvable group, which strengthen the conjecture on degeneratable surfaces.Comment: accepted for publication at "Sci. in China, ser. Math"; 22 pages, 11 figure

    Spectroscopic investigation of quantum confinement effects in ion implanted silicon-on-sapphire films

    Full text link
    Crystalline Silicon-on-Sapphire (SOS) films were implanted with boron (B+^+) and phosphorous (P+^+) ions. Different samples, prepared by varying the ion dose in the range 101410^{14} to 5 x 101510^{15} and ion energy in the range 150-350 keV, were investigated by the Raman spectroscopy, photoluminescence (PL) spectroscopy and glancing angle x-ray diffraction (GAXRD). The Raman results from dose dependent B+^+ implanted samples show red-shifted and asymmetrically broadened Raman line-shape for B+^+ dose greater than 101410^{14} ions cm2^{-2}. The asymmetry and red shift in the Raman line-shape is explained in terms of quantum confinement of phonons in silicon nanostructures formed as a result of ion implantation. PL spectra shows size dependent visible luminescence at \sim 1.9 eV at room temperature, which confirms the presence of silicon nanostructures. Raman studies on P+^+ implanted samples were also done as a function of ion energy. The Raman results show an amorphous top SOS surface for sample implanted with 150 keV P+^+ ions of dose 5 x 101510^{15} ions cm2^{-2}. The nanostructures are formed when the P+^+ energy is increased to 350 keV by keeping the ion dose fixed. The GAXRD results show consistency with the Raman results.Comment: 9 Pages, 6 Figures and 1 Table, \LaTex format To appear in SILICON(SPRINGER

    Week 96 efficacy and safety results of the phase 3, randomized EMERALD trial to evaluate switching from boosted-protease inhibitors plus emtricitabine/tenofovir disoproxil fumarate regimens to the once daily, single-tablet regimen of darunavir/cobicistat/emtricitabine/tenofovir alafenamide (D/C/F/TAF) in treatment-experienced, virologically-suppressed adults living with HIV-1

    Get PDF
    Darunavir/cobicistat/emtricitabine/tenofovir alafenamide (D/C/F/TAF) 800/150/200/10 mg was investigated through 96 weeks in EMERALD (NCT02269917). Virologically-suppressed, HIV-1-positive treatment-experienced adults (previous non-darunavir virologic failure [VF] allowed) were randomized (2:1) to D/C/F/TAF or boosted protease inhibitor (PI) plus emtricitabine/tenofovir-disoproxil-fumarate (F/TDF) over 48 weeks. At week 52 participants in the boosted PI arm were offered switch to D/C/F/TAF (late-switch, 44 weeks D/C/F/TAF exposure). All participants were followed on D/C/F/TAF until week 96. Efficacy endpoints were percentage cumulative protocol-defined virologic rebound (PDVR; confirmed viral load [VL] >= 50 copies/mL) and VL = 50 copies/mL (VF) (FDA-snapshot analysis). Of 1141 randomized patients, 1080 continued in the extension phase. Few patients had PDVR (D/C/F/TAF: 3.1%, 24/763 cumulative through week 96; late-switch: 2.3%, 8/352 week 52-96). Week 96 virologic suppression was 90.7% (692/763) (D/C/F/TAF) and 93.8% (330/352) (late-switch). VF was 1.2% and 1.7%, respectively. No darunavir, primary PI, tenofovir or emtricitabine resistance-associated mutations were observed post-baseline. No patients discontinued for efficacy-related reasons. Few discontinued due to adverse events (2% D/C/F/TAF arm). Improved renal and bone parameters were maintained in the D/C/F/TAF arm and observed in the late-switch arm, with small increases in total cholesterol/high-density-lipoprotein-cholesterol ratio. A study limitation was the lack of a control arm in the week 96 analysis. Through 96 weeks, D/C/F/TAF resulted in low PDVR rates, high virologic suppression rates, very few VFs, and no resistance development. Late-switch results were consistent with D/C/F/TAF week 48 results. EMERALD week 96 results confirm the efficacy, high genetic barrier to resistance and safety benefits of D/C/F/TAF

    Inhibiting Metastatic Breast Cancer Cell Migration via the Synergy of Targeted, pH-triggered siRNA Delivery and Chemokine Axis Blockade

    Get PDF
    Because breast cancer patient survival inversely correlates with metastasis, we engineered vehicles to inhibit both the C-X-C chemokine receptor type 4 (CXCR4) and lipocalin-2 (Lcn2) mediated migratory pathways. pH-responsive liposomes were designed to protect and trigger the release of Lcn2 siRNA. Liposomes were modified with anti-CXCR4 antibodies to target metastatic breast cancer (MBC) cells and block migration along the CXCR4-CXCL12 axis. This synergistic approach—coupling the CXCR4 axis blockade with Lcn2 silencing—significantly reduced migration in triple-negative human breast cancer cells (88% for MDA-MB-436 and 92% for MDA-MB-231). The results suggested that drug delivery vehicles engineered to attack multiple migratory pathways may effectively slow progression of MBC
    corecore