1,048 research outputs found

    From Service to Experience: Understanding and Defining the Hospitality Business

    Get PDF
    Failure adequately to define or understand hospitality as a commercial phenomenon has created a fragmented academic environment and a schizophrenia in the industry that has the potential to limit its development as a global industry. This article suggests that, by redefining hospitality as behaviour and experience, a new perspective emerges that has exciting implications for the management of hospitality businesses. A framework to describe hospitality in the commercial domain is proposed. This framework suggests a focus on the host–guest relationship, generosity, theatre and performance, ‘lots of little surprises’, and the security of strangers – a focus that provides guests with experiences that are personal, memorable and add value to their lives

    Highly Ionized Collimated Outflow from HE 0238 - 1904

    Full text link
    We present a detailed analysis of a highly ionized, multiphased and collimated outflowing gas detected through O V, O VI, Ne VIII and Mg X absorption associated with the QSO HE 0238 - 1904 (z_em ~ 0.629). Based on the similarities in the absorption line profiles and estimated covering fractions, we find that the O VI and Ne VIII absorption trace the same phase of the absorbing gas. Simple photoionization models can reproduce the observed N(Ne VIII), N(O VI) and N(Mg X) from a single phase whereas the low ionization species (e.g. N III, N IV, O IV) originate from a different phase. The measured N(Ne VIII)/N(O VI) ratio is found to be remarkably similar (within a factor of ~ 2) in several individual absorption components kinematically spread over ~ 1800 km/s. Under photoionization this requires a fine tuning between hydrogen density (nH) and the distance of the absorbing gas from the QSO. Alternatively this can also be explained by collisional ionization in hot gas with T > 10^{5.7} K. Long-term stability favors the absorbing gas being located outside the broad line region (BLR). We speculate that the collimated flow of such a hot gas could possibly be triggered by the radio jet interaction.Comment: Minor revision (accepted for publication in MNRAS letter

    A Composite HST Spectrum of Quasars

    Get PDF
    We construct a composite quasar spectrum from 284 HST FOS spectra of 101 quasars with redshifts z > 0.33. The spectrum covers the wavelengths between 350 and 3000 A in the rest frame. There is a significant steepening of the continuum slope around 1050 A. The continuum between 1050 and 2200 A can be modeled as a power law with alpha = -0.99. For the full sample the power-law index in the extreme ultraviolet (EUV) between 350 and 1050 A is alpha = -1.96. The continuum flux in the wavelengths near the Lyman limit shows a depression of about 10 percent. The break in the power-law index and the slight depression of the continuum near the Lyman limit are features expected in Comptonized accretion-disk spectra.Comment: 10 figures To appear in the February 1, 1997, issue of the Ap.

    An 800-million-solar-mass black hole in a significantly neutral Universe at redshift 7.5

    Get PDF
    Quasars are the most luminous non-transient objects known and as a result they enable studies of the Universe at the earliest cosmic epochs. Despite extensive efforts, however, the quasar ULAS J1120+0641 at z=7.09 has remained the only one known at z>7 for more than half a decade. Here we report observations of the quasar ULAS J134208.10+092838.61 (hereafter J1342+0928) at redshift z=7.54. This quasar has a bolometric luminosity of 4e13 times the luminosity of the Sun and a black hole mass of 8e8 solar masses. The existence of this supermassive black hole when the Universe was only 690 million years old---just five percent of its current age---reinforces models of early black-hole growth that allow black holes with initial masses of more than about 1e4 solar masses or episodic hyper-Eddington accretion. We see strong evidence of absorption of the spectrum of the quasar redwards of the Lyman alpha emission line (the Gunn-Peterson damping wing), as would be expected if a significant amount (more than 10 per cent) of the hydrogen in the intergalactic medium surrounding J1342+0928 is neutral. We derive a significant fraction of neutral hydrogen, although the exact fraction depends on the modelling. However, even in our most conservative analysis we find a fraction of more than 0.33 (0.11) at 68 per cent (95 per cent) probability, indicating that we are probing well within the reionization epoch of the Universe.Comment: Updated to match the final journal versio

    The Glasgow-Maastricht foot model, evaluation of a 26 segment kinematic model of the foot

    Get PDF
    BACKGROUND: Accurately measuring of intrinsic foot kinematics using skin mounted markers is difficult, limited in part by the physical dimensions of the foot. Existing kinematic foot models solve this problem by combining multiple bones into idealized rigid segments. This study presents a novel foot model that allows the motion of the 26 bones to be individually estimated via a combination of partial joint constraints and coupling the motion of separate joints using kinematic rhythms. METHODS: Segmented CT data from one healthy subject was used to create a template Glasgow-Maastricht foot model (GM-model). Following this, the template was scaled to produce subject-specific models for five additional healthy participants using a surface scan of the foot and ankle. Forty-three skin mounted markers, mainly positioned around the foot and ankle, were used to capture the stance phase of the right foot of the six healthy participants during walking. The GM-model was then applied to calculate the intrinsic foot kinematics. RESULTS: Distinct motion patterns where found for all joints. The variability in outcome depended on the location of the joint, with reasonable results for sagittal plane motions and poor results for transverse plane motions. CONCLUSIONS: The results of the GM-model were comparable with existing literature, including bone pin studies, with respect to the range of motion, motion pattern and timing of the motion in the studied joints. This novel model is the most complete kinematic model to date. Further evaluation of the model is warranted

    Hubble Space Telescope Ultraviolet Spectroscopy of Fourteen Low-Redshift Quasars

    Get PDF
    We present low-resolution ultraviolet spectra of 14 low redshift (z<0.8) quasars observed with HST/STIS as part of a Snap project to understand the relationship between quasar outflows and luminosity. By design, all observations cover the CIV emission line. Nine of the quasars are from the Hamburg-ESO catalog, three are from the Palomar-Green catalog, and one is from the Parkes catalog. The sample contains a few interesting quasars including two broad absorption line (BAL) quasars (HE0143-3535, HE0436-2614), one quasar with a mini-BAL (HE1105-0746), and one quasar with associated narrow absorption (HE0409-5004). These BAL quasars are among the brightest known (though not the most luminous) since they lie at z<0.8. We compare the properties of these BAL quasars to the z1.4 Large Bright Quasar samples. By design, our objects sample luminosities in between these two surveys, and our four absorbed objects are consistent with the v ~ L^0.62 relation derived by Laor & Brandt (2002). Another quasar, HE0441-2826, contains extremely weak emission lines and our spectrum is consistent with a simple power-law continuum. The quasar is radio-loud, but has a steep spectral index and a lobe-dominated morphology, which argues against it being a blazar. The unusual spectrum of this quasar resembles the spectra of the quasars PG1407+265, SDSSJ1136+0242, and PKS1004+13 for which several possible explanations have been entertained.Comment: Uses aastex.cls, 21 pages in preprint mode, including 6 figures and 2 tables; accepted for publication in The Astronomical Journal (projected vol 133

    Cosmic Hydrogen Was Significantly Neutral a Billion Years After the Big Bang

    Full text link
    The ionization fraction of cosmic hydrogen, left over from the big bang, provides crucial fossil evidence for when the first stars and quasar black holes formed in the infant universe. Spectra of the two most distant quasars known show nearly complete absorption of photons with wavelengths shorter than the Ly-alpha transition of neutral hydrogen, indicating that hydrogen in the intergalactic medium (IGM) had not been completely ionized at a redshift z~6.3, about a billion years after the big bang. Here we show that the radii of influence of ionizing radiation from these quasars imply that the surrounding IGM had a neutral hydrogen fraction of tens of percent prior to the quasar activity, much higher than previous lower limits of ~0.1%. When combined with the recent inference of a large cumulative optical depth to electron scattering after cosmological recombination from the WMAP data, our result suggests the existence of a second peak in the mean ionization history, potentially due to an early formation episode of the first stars.Comment: 14 Pages, 2 Figures. Accepted for publication in Nature. Press embargo until publishe

    Performance of the Center-Of-Curvature Optical Assembly During Cryogenic Testing of the James Webb Space Telescope

    Get PDF
    The James Webb Space Telescope (JWST) primary mirror (PM) is 6.6 meters in diameter and consists of 18 hexagonal segments, each 1.5 meters point-to-point. Each segment has a 6 degree-of-freedom hexapod actuation system and a radius-of-curvature (ROC) actuation system. The full telescope was tested at its cryogenic operating temperature at Johnson Space Center (JSC) in 2017. This testing included center-of-curvature measurements of the PM wavefront error using the Center-of-Curvature Optical Assembly (COCOA), along with the Absolute Distance Meter Assembly (ADMA). The COCOA included an interferometer, a reflective null, an interferometer-null calibration system, coarse and fine alignment systems, and two displacement measuring interferometer systems. A multiple-wavelength interferometer was used to enable alignment and phasing of the PM segments. By combining measurements at two laser wavelengths, synthetic wavelengths up to 15 millimeters could be achieved, allowing mirror segments with millimeter-level piston errors to be phased to the nanometer level. The ADMA was used to measure and set the spacing between the PM and the focus of the COCOA null (i.e., the PM center-of-curvature) for determination of the ROC. This paper describes the COCOA, the PM test setup, the testing performed, the test results, and the performance of the COCOA in aligning & phasing the PM segments and measuring the final PM wavefront error

    A Runaway Black Hole in COSMOS: Gravitational Wave or Slingshot Recoil?

    Get PDF
    We present a detailed study of a peculiar source in the COSMOS survey at z=0.359. Source CXOCJ100043.1+020637 (CID-42) presents two compact optical sources embedded in the same galaxy. The distance between the 2, measured in the HST/ACS image, is 0.495" that, at the redshift of the source, corresponds to a projected separation of 2.46 kpc. A large (~1200 km/s) velocity offset between the narrow and broad components of Hbeta has been measured in three different optical spectra from the VLT/VIMOS and Magellan/IMACS instruments. CID-42 is also the only X-ray source having in its X-ray spectra a strong redshifted broad absorption iron line, and an iron emission line, drawing an inverted P-Cygni profile. The Chandra and XMM data show that the absorption line is variable in energy by 500 eV over 4 years and that the absorber has to be highly ionized, in order not to leave a signature in the soft X-ray spectrum. That these features occur in the same source is unlikely to be a coincidence. We envisage two possible explanations: (1) a gravitational wave recoiling black hole (BH), caught 1-10 Myr after merging, (2) a Type 1/ Type 2 system in the same galaxy where the Type 1 is recoiling due to slingshot effect produced by a triple BH system. The first possibility gives us a candidate gravitational waves recoiling BH with both spectroscopic and imaging signatures. In the second case, the X-ray absorption line can be explained as a BAL-like outflow from the foreground nucleus (a Type 2 AGN) at the rearer one (a Type 1 AGN), which illuminates the otherwise undetectable wind, giving us the first opportunity to show that fast winds are present in obscured AGN.Comment: 13 figures; submitted to ApJ. Sent back to the referee after the first interaction and awaiting the final comment
    corecore