254 research outputs found

    The Distribution of H2O Maser Emission in the Nucleus of NGC 4945

    Get PDF
    We present the first interferometer map of the water maser emission in the active nucleus of NGC 4945. Although the declination of the galaxy is about -49 degrees, we were able to make the observations with the southernmost antennas of the Very Long Baseline Array. Strong maser emission is present in three velocity ranges, one near the systemic velocity and two shifted roughly symmetrically by +/-(100-150) km/s. This is the first detection of highly blue-shifted water emission in NGC 4945. We determined the position of the maser to be RA(B1950)= 13 02 32.28 +/- 0.02 ; Dec(B1950)= -49 12 01.9 +/- 0.1. The uncertainties in earlier estimates are at least several arcseconds. The maser lies within 2'' (36 pc at a distance of 3.7 Mpc) of the peaks in 1.4 GHz continuum and 1.6 micron emission from the nucleus. The mappable maser emission is distributed roughly linearly over about 40 milliarcseconds (0.7 pc) at a position angle of about 45 degrees, which is close to the 43 +/- 2 degree position angle of the galactic disk. The red and blue-shifted emission symmetrically stradle the systemic emission on the sky, which suggests material in edge-on circular motion around a central object. The position-velocity structure indicates a binding mass of about one million Suns, within a volume of radius about 0.3 pc. This implies that the central engine radiates on the order of 10% of its Eddington luminosity.Comment: 18 pages, including 5 Postscript figures. Accepted for publication in ApJ Letter

    Arecibo HI Absorption Measurements of Pulsars and the Electron Density at Intermediate Longitudes in the First Galactic Quadrant

    Get PDF
    We have used the Arecibo telescope to measure the HI absorption spectra of eight pulsars. We show how kinematic distance measurements depend upon the values of the galactic constants R_o and Theta_o, and we select our preferred current values from the literature. We then derive kinematic distances for the low-latitude pulsars in our sample and electron densities along their lines of sight. We combine these measurements with all others in the inner galactic plane visible from Arecibo to study the electron density in this region. The electron density in the interarm range 48 degrees < l < 70 degrees is [0.017 (-0.007,+0.012) (68% c.l.)] cm^(-3). This is 0.75 (-0.22,+0.49) (68% c.l.) of the value calculated by the Cordes & Lazio (2002) galactic electron density model. The model agrees more closely with electron density measurements toward Arecibo pulsars lying closer to the galactic center, at 30 degrees<l<48 degrees. Our analysis leads to the best current estimate of the distance of the relativistic binary pulsar B1913+16: d=(9.0 +/- 3) kpc. We use the high-latitude pulsars to search for small-scale structure in the interstellar hydrogen observed in absorption over multiple epochs. PSR B0301+19 exhibited significant changes in its absorption spectrum over 22 yr, indicating HI structure on a ~500 AU scale.Comment: Accepted by Astrophysical Journal September 200

    Multi-Frequency Synthesis of VLBI Images Using a Generalized Maximum Entropy Method

    Full text link
    A new multi-frequency synthesis algorithm for reconstructing images from multi-frequency VLBI data is proposed. The algorithm is based on a generalized maximum-entropy method, and makes it possible to derive an effective spectral correction for images over a broad frequency bandwidth, while simultaneously reconstructing the spectral-index distribution over the source. The results of numerical simulations demonstrating the capabilities of the algorithm are presented.Comment: 17 pages, 8 figure

    CCD Parallaxes for 309 Late-type Dwarfs and Subdwarfs

    Full text link
    New, updated, and/or revised CCD parallaxes determined with the Strand Astrometric Reflector at the Naval Observatory Flagstaff Station (NOFS) are presented. Included are results for 309 late-type dwarf and subdwarf stars observed over the 30+ years that the program operated. For 124 of the stars, parallax determinations from other investigators have already appeared in the literature and we compare the different results. Also included here is new or updated VIVI photometry on the Johnson-Kron-Cousins system for all but a few of the faintest targets. Together with 2MASS JHKsJHK_s near-infrared photometry, a sample of absolute magnitude versus color and color versus color diagrams are constructed. Since large proper motion was a prime criterion for targeting the stars, the majority turn out to be either M-type subdwarfs or late M-type dwarfs. The sample also includes 50 dwarf or subdwarf L-type stars, and four T dwarfs. Possible halo subdwarfs are identified in the sample based on tangential velocity, subluminosity, and spectral type. Residuals from the solutions for parallax and proper motion for several stars show evidence of astrometric perturbations.Comment: Machine-readable tables are available as supplemental material (click on "Other Formats" to access

    Sco X-1: The Evolution and Nature of the Twin Compact Radio Lobes

    Get PDF
    The radio components associated with the LMXB Sco X-1 have been monitored with extensive VLBI imaging at 1.7 and 5.0 GHz over four years, including a 56-hour continuous VLBI observation in 1999 June. We often detected one strong and one weak compact radio component, moving in opposite directions from the radio core. We suggest that the moving components are radio lobes generated by the disruption of energy flow in a twin-beam from the binary system. The average lifetime of a lobe-pair, the space motion of the lobes and the measured energy flow in the beam are discussed in arXiv:astro-ph/0104325. The lobe has a flux density that is variable over a time-scale of one hour, a measured minimum size of 1 mas (2.8 au), and is extended perpendicular to its motion. This short electron radiative lifetime may be caused by synchrotron losses if the lobe magnetic field is 300 G, or by adiabatic expansion of the electrons as soon as they are produced at the working surface. The lobes also show periods of slow expansion and a steepening radio spectrum, perhaps related to the characteristics of the beam energy flow. The radio morphology for Sco X-1 is more simple than for most other Galactic jet sources. The lobes of Sco X-1 are similar to hot-spots found in many extragalactic double sources. Scaling the phenomena observed in Sco X-1 to extragalactic sources implies hot-spot variability time-scales of 10^4 yr and hot-spot lifetimes of 10^5 yr. The recurrent formation of lobes in Sco X-1 probably does not occur for extragalactic radio sources.Comment: 22 pages of text + 16 figures. ApJ, in pres

    Optimal Image Reconstruction in Radio Interferometry

    Full text link
    We introduce a method for analyzing radio interferometry data which produces maps which are optimal in the Bayesian sense of maximum posterior probability density, given certain prior assumptions. It is similar to maximum entropy techniques, but with an exact accounting of the multiplicity instead of the usual approximation involving Stirling's formula. It also incorporates an Occam factor, automatically limiting the effective amount of detail in the map to that justified by the data. We use Gibbs sampling to determine, to any desired degree of accuracy, the multi-dimensional posterior density distribution. From this we can construct a mean posterior map and other measures of the posterior density, including confidence limits on any well-defined function of the posterior map.Comment: 41 pages, 11 figures. High resolution figures 8 and 9 available at http://www.astro.uiuc.edu/~bwandelt/SuttonWandelt200

    A model for double notches and bifurcated components in radio profiles of pulsars and magnetars - Evidence for the parallel acceleration maser in pulsar magnetosphere

    Get PDF
    Averaged pulse profiles of three nearby pulsars: B1929+10, J0437-4715 and B0950+08 exhibit unusual `double notches'. These W-like looking features consist of two adjacent V-shaped dips that approach each other at increasing observation frequency nuobs roughly at a rate sep \propto nuobs^{-1/2}, where sep is the separation between the notches' minima. We show that basic properties of the notches, namely their W-like look and the rate of their converging can be understood within a narrow class of models of coherent radio emission from pulsars: the free electron maser models based on coherent inverse Compton scattering of parallel oscillations of ambient electric field. The observed properties of the pulsars imply that the Fourier spectrum of the wiggler-like oscillations is narrow and that the broad-band character of the radio emission reflects the width of the electron energy distribution. Such a model provides a natural explanation for the frequency-independent separation between the main pulse and interpulse of B0950+08 as well as for the lack of radius to frequency mapping in the conal-like emission of J0437-4715. The frequency behaviour of the main pulse in the profile of the first radio magnetar XTE J1810-197 can also be explained within this model.Comment: 15 pages, 10 figures, accepted by A&A after minor change

    Instruments of RT-2 Experiment onboard CORONAS-PHOTON and their test and evaluation III: Coded Aperture Mask and Fresnel Zone Plates in RT-2/CZT Payload

    Full text link
    Imaging in hard X-rays of any astrophysical source with high angular resolution is a challenging job. Shadow-casting technique is one of the most viable options for imaging in hard X-rays. We have used two different types of shadow-casters, namely, Coded Aperture Mask (CAM) and Fresnel Zone Plate (FZP) pair and two types of pixellated solid-state detectors, namely, CZT and CMOS in RT-2/CZT payload, the hard X-ray imaging instrument onboard the CORONAS-PHOTON satellite. In this paper, we present the results of simulations with different combinations of coders (CAM & FZP) and detectors that are employed in the RT-2/CZT payload. We discuss the possibility of detecting transient Solar flares with good angular resolution for various combinations. Simulated results are compared with laboratory experiments to verify the consistency of the designed configuration.Comment: 27 pages, 16 figures, Accepted for publication in Experimental Astronomy (in press

    The USNO-B Catalog

    Full text link
    USNO-B is an all-sky catalog that presents positions, proper motions, magnitudes in various optical passbands, and star/galaxy estimators for 1,042,618,261 objects derived from 3,643,201,733 separate observations. The data were obtained from scans of 7,435 Schmidt plates taken for the various sky surveys during the last 50 years. USNO-B1.0 is believed to provide all-sky coverage, completeness down to V = 21, 0.2 arcsecond astrometric accuracy at J2000, 0.3 magnitude photometric accuracy in up to five colors, and 85% accuracy for distinguishing stars from non-stellar objects. A brief discussion of various issues is given here, but the actual data are available from http://www.nofs.navy.mil and other sites.Comment: Accepted by Astronomical Journa
    corecore