3,155 research outputs found
Combining local- and large-scale models to predict the distributions of invasive plant species
Habitat-distribution models are increasingly used to predict the potential distributions of invasive species and to inform monitoring. However, these models assume that species are in equilibrium with the environment, which is clearly not true for most invasive species. Although this assumption is frequently acknowledged, solutions have not been adequately addressed. There are several potential methods for improving habitat-distribution models. Models that require only presence data may be more effective for invasive species, but this assumption has rarely been tested. In addition, combining modeling types to form ‘ensemble’ models may improve the accuracy of predictions. However, even with these improvements, models developed for recently invaded areas are greatly influenced by the current distributions of species and thus reflect near- rather than long-term potential for invasion. Larger scale models from species’ native and invaded ranges may better reflect long-term invasion potential, but they lack finer scale resolution. We compared logistic regression (which uses presence/absence data) and two presence-only methods for modeling the potential distributions of three invasive plant species on the Olympic Peninsula in Washington State, USA. We then combined the three methods to create ensemble models. We also developed climate-envelope models for the same species based on larger scale distributions and combined models from multiple scales to create an index of near- and long-term invasion risk to inform monitoring in Olympic National Park (ONP). Neither presence-only nor ensemble models were more accurate than logistic regression for any of the species. Larger scale models predicted much greater areas at risk of invasion. Our index of near- and long-term invasion risk indicates that \u3c4% of ONP is at high near-term risk of invasion while 67-99% of the Park is at moderate or high long-term risk of invasion. We demonstrate how modeling results can be used to guide the design of monitoring protocols and monitoring results can in turn be used to refine models. We propose that by using models from multiple scales to predict invasion risk and by explicitly linking model development to monitoring, it may be possible to overcome some of the limitations of habitat-distribution models
Binary planetary nebulae nuclei towards the Galactic bulge. II. A penchant for bipolarity and low-ionisation structures
Considerable effort has been applied towards understanding the precise
shaping mechanisms responsible for the diverse range of morphologies exhibited
by planetary nebulae (PNe). A binary companion is increasingly gaining support
as a dominant shaping mechanism, however morphological studies of the few PNe
that we know for certain were shaped by binary evolution are scarce or biased.
Newly discovered binary central stars (CSPN) from the OGLE-III photometric
variability survey have significantly increased the sample of post
common-envelope (CE) nebulae available for morphological analysis. We present
Gemini South narrow-band images for most of the new sample to complement
existing data in a qualitative morphological study of 30 post-CE nebulae.
Nearly 30% of nebulae have canonical bipolar morphologies, however this rises
to 60% once inclination effects are incorporated with the aid of geometric
models. This is the strongest observational evidence yet linking CE evolution
to bipolar morphologies. A higher than average proportion of the sample shows
low-ionisation knots, filaments or jets suggestive of a binary origin. These
features are also common around emission-line nuclei which may be explained by
speculative binary formation scenarios for H-deficient CSPN.Comment: Accepted for publication in A&
Spectral analysis of the background in ground-based, long-slit spectroscopy
This paper examines the variations, because of atmospheric extinction, of
broad-band visible spectra, obtained from long-slit spectroscopy, in the
vicinity of some stars, nebulae, and one faint galaxy.Comment: 12 figure
Neutrinoless Double Beta Decay and CP Violation
We study the relation between the Majorana neutrino mass matrices and the
neutrinoless double beta decay when CP is not conserved. We give an explicit
form of the decay rate in terms of a rephasing invariant quantity and
demonstrate that in the presence of CP violation it is impossible to have
vanishing neutrinoless double beta decay in the case of two neutrino
generations (or when the third generation leptons do not mix with other leptons
and hence decouple).Comment: 9 pages, UTPT-93-1
Potassium condensing tests of horizontal multitube convective and radiative condensers operating at vapor temperatures of 1250 deg to 1500 deg F
Potassium condensing tests of horizontal multitube convective and radiative condenser operating at vapor temperature
MSW mediated neutrino decay and the solar neutrino problem
We investigate the solar neutrino problem assuming simultaneous presence of
MSW transitions in the sun and neutrino decay on the way from sun to earth. We
do a global -analysis of the data on total rates in Cl, Ga and
Superkamiokande (SK) experiments and the SK day-night spectrum data and
determine the changes in the allowed region in the \dm - \tan^2\theta plane
in presence of decay. We also discuss the implications for unstable neutrinos
in the SNO experiment.Comment: Final version to appear in Phys. Rev.
High-Voltage Power Supply With Fast Rise and Fall Times
A special-purpose high-voltage power supply can be electronically switched on and off with fast rise and fall times, respectively. The output potential is programmable from 20 to 1,250 V. An output current of 50 A can be sustained at 1,250 V. The power supply was designed specifically for electronically shuttering a microchannel plate in an x-ray detector that must operate with exposure times as short as 1 ms. The basic design of the power supply is also adaptable to other applications in which there are requirements for rapid slewing of high voltages. The power-supply circuitry (see figure) includes a preregulator, which is used to program the output at 1/30 of the desired output potential. After the desired voltage has been set, the outputs of a pulse width modulator (PWM) are enabled and used to amplify the preregulator output potential by 30. The amplification is achieved by use of two voltage doublers with a transformer that has two primary and two secondary windings. A resistor is used to limit the current by controlling the drive voltage of two field-effect transistors (FETs) during turn-on of the PWM. A pulse transformer is used to turn on four FETs to short-circuit four output capacitors when the outputs of the PWM have been disabled. The most notable aspects of the performance of the power supply are a rise time of only 80 s and a fall time of only 60 s at a load current of 50 A or less. Another notable aspect is that the application of a 0-to-5-V square wave to a shutdown pin of the PWM causes the production of a 0-to-1,250-V square wave at the output terminals
- …
