677 research outputs found
Recommended from our members
Characterization of silicon nanowire by use of full-vectorial finite element method.
We have carried out a rigorous H-field-based full-vectorial modal analysis and used it to characterize, more accurately, the abrupt dielectric discontinuity of a high index contrast optical waveguide. The full-vectorial H and E fields and the Poynting vector profiles are described in detail. It has been shown through this work that the mode profile of a circular silicon nanowire is not circular and also contains a strong axial field component. The single-mode operation, vector field profiles, modal hybridness, modal ellipticity, and group velocity dispersion of this silicon nanowire are also presented
Household dynamics in pastoral communities and implications for humanitarian aid interventions
Stochastic cycle selection in active flow networks
Active biological flow networks pervade nature and span a wide range of scales, from arterial blood vessels and bronchial mucus transport in humans to bacterial flow through porous media or plasmodial shuttle streaming in slime molds. Despite their ubiquity, little is known about the self-organization principles that govern flow statistics in such nonequilibrium networks. Here we connect concepts from lattice field theory, graph theory, and transition rate theory to understand how topology controls dynamics in a generic model for actively driven flow on a network. Our combined theoretical and numerical analysis identifies symmetry-based rules that make it possible to classify and predict the selection statistics of complex flow cycles from the network topology. The conceptual framework developed here is applicable to a broad class of biological and nonbiological far-from-equilibrium networks, including actively controlled information flows, and establishes a correspondence between active flow networks and generalized ice-type models. Keywords: networks; active transport; stochastic dynamics; topologyNational Science Foundation (U.S.) (Award CBET-1510768
Petition for a Writ of Certiorari
Petition for a Writ of Certiorari submitted by petitioners Public Patent Foundation and American Civil Liberties Union (No. 11-725
Supplemental Brief for Appellees
Supplemental brief for appellees, written by appellees in support of plaintiffs-appellees in AMP v. Myriad Genetics (No. 2010-1406)
Plaintiffs-Appellees' Petition for Panel Rehearing
Petitioners-appelles' petition for panel rehearing, submitted after the CAFC's July 29, 2011 ruling
SPITZER survey of dust grain processing in stable discs around binary post-AGB stars
Aims: We investigate the mineralogy and dust processing in the circumbinary
discs of binary post-AGB stars using high-resolution TIMMI2 and SPITZER
infrared spectra. Methods: We perform a full spectral fitting to the infrared
spectra using the most recent opacities of amorphous and crystalline dust
species. This allows for the identification of the carriers of the different
emission bands. Our fits also constrain the physical properties of different
dust species and grain sizes responsible for the observed emission features.
Results: In all stars the dust is oxygen-rich: amorphous and crystalline
silicate dust species prevail and no features of a carbon-rich component can be
found, the exception being EPLyr, where a mixed chemistry of both oxygen- and
carbon-rich species is found. Our full spectral fitting indicates a high degree
of dust grain processing. The mineralogy of our sample stars shows that the
dust is constituted of irregularly shaped and relatively large grains, with
typical grain sizes larger than 2 micron. The spectra of nearly all stars show
a high degree of crystallinity, where magnesium-rich end members of olivine and
pyroxene silicates dominate. Other dust features of e.g. silica or alumina are
not present at detectable levels. Temperature estimates from our fitting
routine show that a significant fraction of grains must be cool, significantly
cooler than the glass temperature. This shows that radial mixing is very
efficient is these discs and/or indicates different thermal conditions at grain
formation. Our results show that strong grain processing is not limited to
young stellar objects and that the physical processes occurring in the discs
are very similar to those in protoplanetary discs.Comment: 22pages, 50 figures (in appendix), accepted for A&
Brief for Petitioners
Petitioners Brief written by ACLU and Public Patent Foundation in support of petitioners in AMP v. Myriad Genetics (Supreme Court Case Docket No. 12-398)
Fano resonances in plasmonic core-shell particles and the Purcell effect
Despite a long history, light scattering by particles with size comparable
with the light wavelength still unveils surprising optical phenomena, and many
of them are related to the Fano effect. Originally described in the context of
atomic physics, the Fano resonance in light scattering arises from the
interference between a narrow subradiant mode and a spectrally broad radiation
line. Here, we present an overview of Fano resonances in coated spherical
scatterers within the framework of the Lorenz-Mie theory. We briefly introduce
the concept of conventional and unconventional Fano resonances in light
scattering. These resonances are associated with the interference between
electromagnetic modes excited in the particle with different or the same
multipole moment, respectively. In addition, we investigate the modification of
the spontaneous-emission rate of an optical emitter at the presence of a
plasmonic nanoshell. This modification of decay rate due to electromagnetic
environment is referred to as the Purcell effect. We analytically show that the
Purcell factor related to a dipole emitter oriented orthogonal or tangential to
the spherical surface can exhibit Fano or Lorentzian line shapes in the near
field, respectively.Comment: 28 pages, 10 figures; invited book chapter to appear in "Fano
Resonances in Optics and Microwaves: Physics and Application", Springer
Series in Optical Sciences (2018), edited by E. O. Kamenetskii, A. Sadreev,
and A. Miroshnichenk
δ-Aminolevulinic acid cytotoxic effects on human hepatocarcinoma cell lines
BACKGROUND: Acute Intermittent Porphyria is a genetic disorder of heme metabolism, characterized by increased levels of porphyrin precursors, delta-aminolevulinic acid (ALA) and porphobilinogen (PBG). ALA has been reported to generate reactive oxygen species and to cause oxidative damage to proteins, subcellular structures and DNA. It is known that oxidative stress can induce apoptosis. The aim of this work was to study the cytotoxic effect of ALA on two hepatocarcinoma cell lines. RESULTS: We have determined the impact of ALA on HEP G2 and HEP 3B hepatocarcinoma cell lines survival as measured by the MTT assay. ALA proved to be cytotoxic in both cell lines however; HEP G2 was more sensitive to ALA than HEP 3B. Addition of hemin or glucose diminished ALA cytotoxicity in HEP G2 cells; instead it was enhanced in HEP 3B cells. Because apoptosis is usually associated with DNA fragmentation, the DNA of ALA treated and untreated cells were analyzed. The characteristic pattern of DNA fragmentation ladders was observed in ALA treated cells. To elucidate the mechanisms of ALA induced apoptosis, we examined its effect on p53 expression. No changes in p53 mRNA levels were observed after exposure of both cell lines to ALA for 24 h. CDK2 and CDK4 protein levels were reduced after ALA treatment at physiological concentrations
- …
