34,937 research outputs found

    Facilitated movement of inertial Brownian motors driven by a load under an asymmetric potential

    Full text link
    Based on recent work [L. Machura, M. Kostur, P. Talkner, J. Luczka, and P. Hanggi, Phys. Rev. Lett. 98, 040601 (2007)], we extend the study of inertial Brownian motors to the case of an asymmetric potential. It is found that some transport phenomena appear in the presence of an asymmetric potential. Within tailored parameter regimes, there exists two optimal values of the load at which the mean velocity takes its maximum, which means that a load can facilitate the transport in the two parameter regimes. In addition, the phenomenon of multiple current reversals can be observed when the load is increased.Comment: 7 pages, 3 figure

    Karhunen-Lo\`eve expansion for a generalization of Wiener bridge

    Get PDF
    We derive a Karhunen-Lo\`eve expansion of the Gauss process Btg(t)01g(u)dBuB_t - g(t)\int_0^1 g'(u)\,d B_u, t[0,1]t\in[0,1], where (Bt)t[0,1](B_t)_{t\in[0,1]} is a standard Wiener process and g:[0,1]Rg:[0,1]\to R is a twice continuously differentiable function with g(0)=0g(0) = 0 and 01(g(u))2du=1\int_0^1 (g'(u))^2\,d u =1. This process is an important limit process in the theory of goodness-of-fit tests. We formulate two special cases with the function g(t)=2πsin(πt)g(t)=\frac{\sqrt{2}}{\pi}\sin(\pi t), t[0,1]t\in[0,1], and g(t)=tg(t)=t, t[0,1]t\in[0,1], respectively. The latter one corresponds to the Wiener bridge over [0,1][0,1] from 00 to 00.Comment: 25 pages, 1 figure. The appendix is extende

    Approximation of conformal mappings using conformally equivalent triangular lattices

    Get PDF
    Consider discrete conformal maps defined on the basis of two conformally equivalent triangle meshes, that is edge lengths are related by scale factors associated to the vertices. Given a smooth conformal map ff, we show that it can be approximated by such discrete conformal maps fϵf^\epsilon. In particular, let TT be an infinite regular triangulation of the plane with congruent triangles and only acute angles (i.e.\ <π/2<\pi/2). We scale this tiling by ϵ>0\epsilon>0 and approximate a compact subset of the domain of ff with a portion of it. For ϵ\epsilon small enough we prove that there exists a conformally equivalent triangle mesh whose scale factors are given by logf\log|f'| on the boundary. Furthermore we show that the corresponding discrete conformal maps fϵf^\epsilon converge to ff uniformly in C1C^1 with error of order ϵ\epsilon.Comment: 14 pages, 3 figures; v2 typos corrected, revised introduction, some proofs extende

    Exploiting symmetries in SDP-relaxations for polynomial optimization

    Full text link
    In this paper we study various approaches for exploiting symmetries in polynomial optimization problems within the framework of semi definite programming relaxations. Our special focus is on constrained problems especially when the symmetric group is acting on the variables. In particular, we investigate the concept of block decomposition within the framework of constrained polynomial optimization problems, show how the degree principle for the symmetric group can be computationally exploited and also propose some methods to efficiently compute in the geometric quotient.Comment: (v3) Minor revision. To appear in Math. of Operations Researc

    The 3Rs of Cell Therapy

    Get PDF
    The 3Rs for a good education are “reading, 'riting, and 'rithmetic.” The basis for good health care solutions for the emergent field of cell therapy in the future will also involve 3Rs: regulation, reimbursement, and realization of value. The business models in this new field of cell therapy will involve these 3Rs. This article brings forth realities facing this new industry for its approaches to provide curative health care solutions

    A comparative study of optical/ultraviolet variability of narrow-line Seyfert 1 and broad-line Seyfert 1 active galactic nuclei

    Full text link
    The ensemble optical/ultraviolet variability of narrow-line Seyfert 1 (NLS1) type active galactic nuclei (AGNs) is investigated, based on a sample selected from the Sloan Digital Sky Survey (SDSS) Stripe-82 region with multi-epoch photometric scanning data. As a comparison a control sample of broad-line Seyfert 1 (BLS1) type AGNs is also incorporated. To quantify properly the intrinsic variation amplitudes and their uncertainties, a novel method of parametric maximum-likelihood is introduced, that has, as we argued, certain virtues over previously used methods. The majority of NLS1-type AGNs exhibit significant variability on timescales from about ten days to a few years with, however, on average smaller amplitudes compared to BLS1-type AGNs. About 20 NLS1- type AGNs showing relatively large variations are presented, that may deserve future monitoring observations, for instance, reverberation mapping. The averaged structure functions of variability, constructed using the same maximumlikelihood method, show remarkable similarity in shape for the two types of AGNs on timescales longer than about 10 days, which can be approximated by a power-law or an exponential function. This, along with other similar properties, such as the wavelength-dependent variability, are indicative of a common dominant mechanism responsible for the long-term optical/UV variability of both NLS1- and BLS1-type AGNs. Towards the short timescales, however, there is tentative evidence that the structure function of NLS1-type AGNs continues declining, whereas that of BLS1-type AGNs flattens with some residual variability on timescales of days. If this can be confirmed, it may suggest that an alternative mechanism, such as X-ray reprocessing, starts to become dominating in BLS1-type AGNs, but not in NLS1-, on such timescales.Comment: 53 pages, 13 figures, 3 tables, accepted for pulication in A

    Quantum anti-Zeno effect without rotating wave approximation

    Get PDF
    In this paper, we systematically study the spontaneous decay phenomenon of a two-level system under the influences of both its environment and continuous measurements. In order to clarify some well-established conclusions about the quantum Zeno effect (QZE) and the quantum anti-Zeno effect (QAZE), we do not use the rotating wave approximation (RWA) in obtaining an effective Hamiltonian. We examine various spectral distributions by making use of our present approach in comparison with other approaches. It is found that with respect to a bare excited state even without the RWA, the QAZE can still happen for some cases, e.g., the interacting spectra of hydrogen. But for a physical excited state, which is a renormalized dressed state of the atomic state, the QAZE disappears and only the QZE remains. These discoveries inevitably show a transition from the QZE to the QAZE as the measurement interval changes.Comment: 14 pages, 8 figure

    Decoherence-Based Quantum Zeno Effect in a Cavity-QED System

    Full text link
    We present a decoherence-based interpretation for the quantum Zeno effect (QZE) where measurements are dynamically treated as dispersive couplings of the measured system to the apparatus, rather than the von Neumann's projections. It is found that the explicit dependence of the survival probability on the decoherence time quantitatively distinguishes this dynamic QZE from the usual one based on projection measurements. By revisiting the cavity-QED experiment of the QZE [J. Bernu, et al., Phys. Rev. Lett, 101, 180402 (2008)], we suggest an alternative scheme to verify our theoretical consideration that frequent measurements slow down the increase of photon number inside a microcavity due to the nondemolition couplings with the atoms in large detuning.Comment: 4 pages, 3 figure

    Bioinformatics advances in saliva diagnostics

    Get PDF
    There is a need recognized by the National Institute of Dental & Craniofacial Research and the National Cancer Institute to advance basic, translational and clinical saliva research. The goal of the Salivaomics Knowledge Base (SKB) is to create a data management system and web resource constructed to support human salivaomics research. To maximize the utility of the SKB for retrieval, integration and analysis of data, we have developed the Saliva Ontology and SDxMart. This article reviews the informatics advances in saliva diagnostics made possible by the Saliva Ontology and SDxMart

    Photo-assisted Andreev reflection as a probe of quantum noise

    Full text link
    Andreev reflection, which corresponds to the tunneling of two electrons from a metallic lead to a superconductor lead as a Cooper pair (or vice versa), can be exploited to measure high frequency noise. A detector is proposed, which consists of a normal lead--superconductor circuit, which is capacitively coupled to a mesoscopic circuit where noise is to be measured. We discuss two detector circuits: a single normal metal -- superconductor tunnel junction and a normal metal separated from a superconductor by a quantum dot operating in the Coulomb blockade regime. A substantial DC current flows in the detector circuit when an appropriate photon is provided or absorbed by the mesoscopic circuit, which plays the role of an environment for the junction to which it couples. Results for the current can be cast in all cases in the form of a frequency integral of the excess noise of the environment weighted by a kernel which is specific to the transport process (quasiparticle tunneling, Andreev reflection,...) which is considered. We apply these ideas to the measurement of the excess noise of a quantum point contact and we provide numerical estimates of the detector current.Comment: 19 pages, 11 figure
    corecore