45 research outputs found
Unpredictable Variable Prenatal Stress Programs Expression of Genes Involved in Appetite Control and Energy Expenditure
Exposure to stress in the womb shapes neurobiological and physiological outcomes of offspring in later life, including body weight regulation and metabolic profiles. Our previous work utilizing a centrifugation-induced hypergravity demonstrated significantly increased (8-15) body mass in male, but not female, rats exposed throughout gestation to chronic 2-g from conception to birth. We reported the same outcome in adult offspring exposed throughout gestation to Unpredictable Variable Prenatal Stress (UVPS). Here we examine gene expression changes using our UVPS model to identify a potential role for prenatal stress in this hypergravity programming effect. Specifically we focused on appetite control and energy expenditure pathways in prenatally stressed adult (90-day-old) male Sprague-Dawley rats. Time-mated female rats were exposed throughout their 22-day pregnancy to UVPS consisting of white noise, strobe light, and tube restraint individually once per day on an unpredictable schedule for 15, 30 or 60 min. To control for potential changes in postnatal maternal care, newborn pups were fostered to non-manipulated, newly parturient dams. At 90-days of age, we analyzed plasma concentrations of hormones involved in appetite control and energy expenditure (leptin and adiponectin), and quantified expression of key genes in epididymal fat pads harvested from adult male offspring and controls. Leptin regulates energy balance by inhibiting hunger, and adiponectin modulates glucose levels and fatty acid breakdown. Our findings indicate significantly elevated plasma leptin concentrations and reduced expression of epididymal fat leptin (OB) and adiponectin (ADIPOQ) genes compared to controls. Analyses presently underway include quantification of plasma insulin and glucose, and the expression of ghrelin, a peptide that acts on the central nervous system and the body's perception of hunger. Collectively, these findings will further understanding of the consequences of UVPS on body weight regulation and metabolism, and provide further insight into the effect of gravity modulation on mammalian fetal development
Widespread stop-codon recoding in bacteriophages may regulate translation of lytic genes
Bacteriophages (phages) are obligate parasites that use host bacterial translation machinery to produce viral proteins. However, some phages have alternative genetic codes with reassigned stop codons that are predicted to be incompatible with bacterial translation systems. We analysed 9,422 phage genomes and found that stop-codon recoding has evolved in diverse clades of phages that infect bacteria present in both human and animal gut microbiota. Recoded stop codons are particularly over-represented in phage structural and lysis genes. We propose that recoded stop codons might function to prevent premature production of late-stage proteins. Stop-codon recoding has evolved several times in closely related lineages, which suggests that adaptive recoding can occur over very short evolutionary timescales
Clades of huge phages from across Earth's ecosystems
Bacteriophages typically have small genomes and depend on their bacterial hosts for replication. Here we sequenced DNA from diverse ecosystems and found hundreds of phage genomes with lengths of more than 200 kilobases (kb), including a genome of 735 kb, which is-to our knowledge-the largest phage genome to be described to date. Thirty-five genomes were manually curated to completion (circular and no gaps). Expanded genetic repertoires include diverse and previously undescribed CRISPR-Cas systems, transfer RNAs (tRNAs), tRNA synthetases, tRNA-modification enzymes, translation-initiation and elongation factors, and ribosomal proteins. The CRISPR-Cas systems of phages have the capacity to silence host transcription factors and translational genes, potentially as part of a larger interaction network that intercepts translation to redirect biosynthesis to phage-encoded functions. In addition, some phages may repurpose bacterial CRISPR-Cas systems to eliminate competing phages. We phylogenetically define the major clades of huge phages from human and other animal microbiomes, as well as from oceans, lakes, sediments, soils and the built environment. We conclude that the large gene inventories of huge phages reflect a conserved biological strategy, and that the phages are distributed across a broad bacterial host range and across Earth's ecosystems
Integrating Entrepreneurship into the Design Classroom: Case Studies from the Developing World
© 2017, Springer Science+Business Media, LLC. Developing countries are more and more committed to building a knowledge-based economy as a means to diversify from their current resource-based economy. The current focus of many governments is on technology with real insights on creative economy and arts. In this context, universities are seen as a key partner of the government. This article presents the results of two innovative case studies of professors working in the College of Art and Design collaborating with a professor in the College of Business to integrate the concepts of entrepreneurship into their interior design courses. This was done through designing space for entrepreneurial projects and by the students acting as entrepreneurs themselves with an external client. This dual model of training combines (1) learning processes about the habits and the needs of entrepreneurs and (2) learning by acting as an entrepreneur. Such methods demonstrate the role of universities to provide a proper theoretical background for students and to foster entrepreneurial behaviors through arts entrepreneurship education. Furthermore, the central role of professors to introduce innovative teaching methods to combine entrepreneurship and the creative economy into non-business courses is an important finding in these case studies
Candidate Phyla Radiation Roizmanbacteria From Hot Springs Have Novel and Unexpectedly Abundant CRISPR-Cas Systems.
The Candidate Phyla Radiation (CPR) comprises a huge group of bacteria that have small genomes that rarely encode CRISPR-Cas systems for phage defense. Consequently, questions remain about their mechanisms of phage resistance and the nature of phage that infect them. The compact CRISPR-CasY system (Cas12d) with potential value in genome editing was first discovered in these organisms. Relatively few CasY sequences have been reported to date, and little is known about the function and activity of these systems in the natural environment. Here, we conducted a genome-resolved metagenomic investigation of hot spring microbiomes and recovered CRISPR systems mostly from Roizmanbacteria that involve CasY proteins that are divergent from published sequences. Within population diversity in the spacer set indicates current in situ diversification of most of the loci. In addition to CasY, some Roizmanbacteria genomes also encode large type I-B and/or III-A systems that, based on spacer targeting, are used in phage defense. CRISPR targeting identified three phage represented by complete genomes and a prophage, which are the first reported for bacteria of the Microgenomates superphylum. Interestingly, one phage encodes a Cas4-like protein, a scenario that has been suggested to drive acquisition of self-targeting spacers. Consistent with this, the Roizmanbacteria population that it infects has a CRISPR locus that includes self-targeting spacers and a fragmented CasY gene (fCasY). Despite gene fragmentation, the PAM sequence is the same as that of other CasY reported in this study. Fragmentation of CasY may avoid the lethality of self-targeting spacers. However, the spacers may still have some biological role, possibly in genome regulation. The findings expand our understanding of CasY diversity, and more broadly, CRISPR-Cas systems and phage of CPR bacteria
