1,982 research outputs found
sl(N) Onsager's Algebra and Integrability
We define an analog of Onsager's Algebra through a finite set of
relations that generalize the Dolan Grady defining relations for the original
Onsager's Algebra. This infinite-dimensional Lie Algebra is shown to be
isomorphic to a fixed point subalgebra of Loop Algebra with respect
to a certain involution. As the consequence of the generalized Dolan Grady
relations a Hamiltonian linear in the generators of Onsager's Algebra
is shown to posses an infinite number of mutually commuting integrals of
motion
Analyticity and Integrabiity in the Chiral Potts Model
We study the perturbation theory for the general non-integrable chiral Potts
model depending on two chiral angles and a strength parameter and show how the
analyticity of the ground state energy and correlation functions dramatically
increases when the angles and the strength parameter satisfy the integrability
condition. We further specialize to the superintegrable case and verify that a
sum rule is obeyed.Comment: 31 pages in harvmac including 9 tables, several misprints eliminate
Thermodynamics of the 3-State Potts Spin Chain
We demonstrate the relation of the infrared anomaly of conformal field theory
with entropy considerations of finite temperature thermodynamics for the
3-state Potts chain. We compute the free energy and compute the low temperature
specific heat for both the ferromagnetic and anti-ferromagnetic spin chains,
and find the central charges for both.Comment: 18 pages, LaTex. Preprint # ITP-SB-92-60. References added and first
section expande
Low-Temperature Expansions and Correlation Functions of the Z_3-Chiral Potts Model
Using perturbative methods we derive new results for the spectrum and
correlation functions of the general Z_3-chiral Potts quantum chain in the
massive low-temperature phase. Explicit calculations of the ground state energy
and the first excitations in the zero momentum sector give excellent
approximations and confirm the general statement that the spectrum in the
low-temperature phase of general Z_n-spin quantum chains is identical to one in
the high-temperature phase where the role of charge and boundary conditions are
interchanged. Using a perturbative expansion of the ground state for the Z_3
model we are able to gain some insight in correlation functions. We argue that
they might be oscillating and give estimates for the oscillation length as well
as the correlation length.Comment: 17 pages (Plain TeX), BONN-HE-93-1
Impact of positivity and complete positivity on accessibility of Markovian dynamics
We consider a two-dimensional quantum control system evolving under an
entropy-increasing irreversible dynamics in the semigroup form. Considering a
phenomenological approach to the dynamics, we show that the accessibility
property of the system depends on whether its evolution is assumed to be
positive or completely positive. In particular, we characterize the family of
maps having different accessibility and show the impact of that property on
observable quantities by means of a simple physical model.Comment: 11 pages, to appear in J. Phys.
A non-Hermitian critical point and the correlation length of strongly correlated quantum systems
We study a non-Hermitian generalization of quantum systems in which an
imaginary vector potential is added to the momentum operator. In the
tight-binding approximation, we make the hopping energy asymmetric in the
Hermitian Hamiltonian. In a previous article, we conjectured that the
non-Hermitian critical point where the energy gap vanishes is equal to the
inverse correlation length of the Hermitian system and we confirmed the
conjecture for two exactly solvable systems. In this article, we present more
evidence for the conjecture. We also argue the basis of our conjecture by
noting the dispersion relation of the elementary excitation.Comment: 25 pages, 18 figure
Asymmetric XXZ chain at the antiferromagnetic transition: Spectra and partition functions
The Bethe ansatz equation is solved to obtain analytically the leading
finite-size correction of the spectra of the asymmetric XXZ chain and the
accompanying isotropic 6-vertex model near the antiferromagnetic phase boundary
at zero vertical field. The energy gaps scale with size as and
its amplitudes are obtained in terms of level-dependent scaling functions.
Exactly on the phase boundary, the amplitudes are proportional to a sum of
square-root of integers and an anomaly term. By summing over all low-lying
levels, the partition functions are obtained explicitly. Similar analysis is
performed also at the phase boundary of zero horizontal field in which case the
energy gaps scale as . The partition functions for this case are found
to be that of a nonrelativistic free fermion system. From symmetry of the
lattice model under rotation, several identities between the partition
functions are found. The scaling at zero vertical field is
interpreted as a feature arising from viewing the Pokrovsky-Talapov transition
with the space and time coordinates interchanged.Comment: Minor corrections only. 18 pages in RevTex, 2 PS figure
Nonequilibrium Forces Between Neutral Atoms Mediated by a Quantum Field
We study all known and as yet unknown forces between two neutral atoms,
modeled as three dimensional harmonic oscillators, arising from mutual
influences mediated by an electromagnetic field but not from their direct
interactions. We allow as dynamical variables the center of mass motion of the
atom, its internal degrees of freedom and the quantum field treated
relativistically. We adopt the method of nonequilibrium quantum field theory
which can provide a first principle, systematic and unified description
including the intrinsic field fluctuations and induced dipole fluctuations. The
inclusion of self-consistent back-actions makes possible a fully dynamical
description of these forces valid for general atom motion. In thermal
equilibrium we recover the known forces -- London, van der Waals and
Casimir-Polder forces -- between neutral atoms in the long-time limit but also
discover the existence of two new types of interatomic forces. The first, a
`nonequilibrium force', arises when the field and atoms are not in thermal
equilibrium, and the second, which we call an `entanglement force', originates
from the correlations of the internal degrees of freedom of entangled atoms.Comment: 16 pages, 2 figure
Quantum spin chains of Temperley-Lieb type: periodic boundary conditions, spectral multiplicities and finite temperature
We determine the spectra of a class of quantum spin chains of Temperley-Lieb
type by utilizing the concept of Temperley-Lieb equivalence with the S=1/2 XXZ
chain as a reference system. We consider open boundary conditions and in
particular periodic boundary conditions. For both types of boundaries the
identification with XXZ spectra is performed within isomorphic representations
of the underlying Temperley-Lieb algebra. For open boundaries the spectra of
these models differ from the spectrum of the associated XXZ chain only in the
multiplicities of the eigenvalues. The periodic case is rather different. Here
we show how the spectrum is obtained sector-wise from the spectra of globally
twisted XXZ chains. As a spin-off, we obtain a compact formula for the
degeneracy of the momentum operator eigenvalues. Our representation theoretical
results allow for the study of the thermodynamics by establishing a
TL-equivalence at finite temperature and finite field.Comment: 29 pages, LaTeX, two references added, redundant figures remove
- …
