2,977 research outputs found
Del Pezzo surfaces with 1/3(1,1) points
We classify del Pezzo surfaces with 1/3(1,1) points in 29 qG-deformation
families grouped into six unprojection cascades (this overlaps with work of
Fujita and Yasutake), we tabulate their biregular invariants, we give good
model constructions for surfaces in all families as degeneracy loci in rep
quotient varieties and we prove that precisely 26 families admit
qG-degenerations to toric surfaces. This work is part of a program to study
mirror symmetry for orbifold del Pezzo surfaces.Comment: 42 pages. v2: model construction added of last remaining surface,
minor corrections, minor changes to presentation, references adde
Derived categories of Burniat surfaces and exceptional collections
We construct an exceptional collection of maximal possible length
6 on any of the Burniat surfaces with , a 4-dimensional family of
surfaces of general type with . We also calculate the DG algebra of
endomorphisms of this collection and show that the subcategory generated by
this collection is the same for all Burniat surfaces.
The semiorthogonal complement of is an "almost
phantom" category: it has trivial Hochschild homology, and K_0(\mathcal
A)=\bZ_2^6.Comment: 15 pages, 1 figure; further remarks expande
Analysis of the thermomechanical inconsistency of some extended hydrodynamic models at high Knudsen number
There are some hydrodynamic equations that, while their parent kinetic equation satisfies fundamental mechanical properties, appear themselves to violate mechanical or thermodynamic properties. This article aims to shed some light on the source of this problem. Starting with diffusive volume hydrodynamic models, the microscopic temporal and spatial scales are first separated at the kinetic level from the macroscopic scales at the hydrodynamic level. Then we consider Klimontovich’s spatial stochastic version of the Boltzmann kinetic equation, and show that, for small local Knudsen numbers, the stochastic term vanishes and the kinetic equation becomes the Boltzmann equation. The collision integral dominates in the small local Knudsen number regime, which is associated with the exact traditional continuum limit. We find a sub-domain of the continuum range which the conventional Knudsen number classification does not account for appropriately. In this sub-domain, it is possible to obtain a fully mechanically-consistent volume (or mass) diffusion model that satisfies the second law of thermodynamics on the grounds of extended non-local-equilibrium thermodynamics
APSIS - an Artificial Planetary System in Space to probe extra-dimensional gravity and MOND
A proposal is made to test Newton's inverse-square law using the perihelion
shift of test masses (planets) in free fall within a spacecraft located at the
Earth-Sun L2 point. Such an Artificial Planetary System In Space (APSIS) will
operate in a drag-free environment with controlled experimental conditions and
minimal interference from terrestrial sources of contamination. We demonstrate
that such a space experiment can probe the presence of a "hidden" fifth
dimension on the scale of a micron, if the perihelion shift of a "planet" can
be measured to sub-arc-second accuracy. Some suggestions for spacecraft design
are made.Comment: 17 pages, revtex, references added. To appear in Special issue of
IJMP
The road to deterministic matrices with the restricted isometry property
The restricted isometry property (RIP) is a well-known matrix condition that
provides state-of-the-art reconstruction guarantees for compressed sensing.
While random matrices are known to satisfy this property with high probability,
deterministic constructions have found less success. In this paper, we consider
various techniques for demonstrating RIP deterministically, some popular and
some novel, and we evaluate their performance. In evaluating some techniques,
we apply random matrix theory and inadvertently find a simple alternative proof
that certain random matrices are RIP. Later, we propose a particular class of
matrices as candidates for being RIP, namely, equiangular tight frames (ETFs).
Using the known correspondence between real ETFs and strongly regular graphs,
we investigate certain combinatorial implications of a real ETF being RIP.
Specifically, we give probabilistic intuition for a new bound on the clique
number of Paley graphs of prime order, and we conjecture that the corresponding
ETFs are RIP in a manner similar to random matrices.Comment: 24 page
Three ways to lattice Boltzmann: A unified time-marching picture
It is shown that the lattice Boltzmann equation LBE corresponds to an explicit Verlet time-marching scheme for a continuum generalized Boltzmann equation with a memory delay equal to a half time step. This proves second-order accuracy of LBE with respect to this generalized equation, with no need of resorting to any implicit time-marching procedure Crank-Nicholson and associated nonlinear variable transformations. It is also shown, and numerically demonstrated, that this equivalence is not only formal, but it also translates into a complete equivalence of the corresponding computational schemes with respect to the hydrodynamic equa- tions. Second-order accuracy with respect to the continuum kinetic equation is also numerically demonstrated for the case of the Taylor-Green vortex. It is pointed out that the equivalence is however broken for the case in which mass and/or momentum are not conserved, such as for chemically reactive flows and mixtures. For such flows, the time-centered implicit formulation may indeed offer a better numerical accuracy
Polarized parton distributions from NLO QCD analysis of world DIS and SIDIS data
The combined analysis of polarized DIS and SIDIS data is performed in NLO
QCD. The new parametrization on polarized PDFs is constructed. The
uncertainties on PDFs and their first moments are estimated applying the
modified Hessian method.
The especial attention is paid to the impact of novel SIDIS data on the
polarized distributions of light sea and strange quarks. In particular, the
important question of polarized sea symmetry is studied in comparison with the
latest results on this subject
- …
