316 research outputs found
Algebraic vortex liquid theory of a quantum antiferromagnet on the kagome lattice
There is growing evidence from both experiment and numerical studies that low
half-odd integer quantum spins on a kagome lattice with predominant
antiferromagnetic near neighbor interactions do not order magnetically or break
lattice symmetries even at temperatures much lower than the exchange
interaction strength. Moreover, there appear to be a plethora of low energy
excitations, predominantly singlets but also spin carrying, which suggest that
the putative underlying quantum spin liquid is a gapless ``critical spin
liquid'' rather than a gapped spin liquid with topological order. Here, we
develop an effective field theory approach for the spin-1/2 Heisenberg model
with easy-plane anisotropy on the kagome lattice. By employing a vortex duality
transformation, followed by a fermionization and flux-smearing, we obtain
access to a gapless yet stable critical spin liquid phase, which is described
by (2+1)-dimensional quantum electrodynamics (QED) with an emergent
flavor symmetry. The specific heat, thermal conductivity, and
dynamical structure factor are extracted from the effective field theory, and
contrasted with other theoretical approaches to the kagome antiferromagnet.Comment: 14 pages, 8 figure
Interlayer coherent composite Fermi liquid phase in quantum Hall bilayers
Composite fermions have played a seminal role in understanding the quantum
Hall effect, particularly the formation of a compressible `composite Fermi
liquid' (CFL) at filling factor nu = 1/2. Here we suggest that in multi-layer
systems interlayer Coulomb repulsion can similarly generate `metallic' behavior
of composite fermions between layers, even if the electrons remain insulating.
Specifically, we propose that a quantum Hall bilayer with nu = 1/2 per layer at
intermediate layer separation may host such an interlayer coherent CFL, driven
by exciton condensation of composite fermions. This phase has a number of
remarkable properties: the presence of `bonding' and `antibonding' composite
Fermi seas, compressible behavior with respect to symmetric currents, and
fractional quantum Hall behavior in the counterflow channel. Quantum
oscillations associated with the Fermi seas give rise to a new series of
incompressible states at fillings nu = p/[2(p \pm 1)] per layer (p an integer),
which is a bilayer analogue of the Jain sequence.Comment: 4 pages, 3 figure
Phase diagram of bismuth in the extreme quantum limit
Elemental bismuth provides a rare opportunity to explore the fate of a
three-dimensional gas of highly mobile electrons confined to their lowest
Landau level. Coulomb interaction, neglected in the band picture, is expected
to become significant in this extreme quantum limit with poorly understood
consequences. Here, we present a study of the angular-dependent Nernst effect
in bismuth, which establishes the existence of ultraquantum field scales on top
of its complex single-particle spectrum. Each time a Landau level crosses the
Fermi level, the Nernst response sharply peaks. All such peaks are resolved by
the experiment and their complex angular-dependence is in very good agreement
with the theory. Beyond the quantum limit, we resolve additional Nernst peaks
signaling a cascade of additional Landau sub-levels caused by electron
interaction
High affinity binding of H3K14ac through collaboration of bromodomains 2, 4 and 5 is critical for the molecular and tumor suppressor functions of PBRM1.
Polybromo-1 (PBRM1) is an important tumor suppressor in kidney cancer. It contains six tandem bromodomains (BDs), which are specialized structures that recognize acetyl-lysine residues. While BD2 has been found to bind acetylated histone H3 lysine 14 (H3K14ac), it is not known whether other BDs collaborate with BD2 to generate strong binding to H3K14ac, and the importance of H3K14ac recognition for the molecular and tumor suppressor function of PBRM1 is also unknown. We discovered that full-length PBRM1, but not its individual BDs, strongly binds H3K14ac. BDs 2, 4, and 5 were found to collaborate to facilitate strong binding to H3K14ac. Quantitative measurement of the interactions between purified BD proteins and H3K14ac or nonacetylated peptides confirmed the tight and specific association of the former. Interestingly, while the structural integrity of BD4 was found to be required for H3K14ac recognition, the conserved acetyl-lysine binding site of BD4 was not. Furthermore, simultaneous point mutations in BDs 2, 4, and 5 prevented recognition of H3K14ac, altered promoter binding and gene expression, and caused PBRM1 to relocalize to the cytoplasm. In contrast, tumor-derived point mutations in BD2 alone lowered PBRM1\u27s affinity to H3K14ac and also disrupted promoter binding and gene expression without altering cellular localization. Finally, overexpression of PBRM1 variants containing point mutations in BDs 2, 4, and 5 or BD2 alone failed to suppress tumor growth in a xenograft model. Taken together, our study demonstrates that BDs 2, 4, and 5 of PBRM1 collaborate to generate high affinity to H3K14ac and tether PBRM1 to chromatin. Mutations in BD2 alone weaken these interactions, and this is sufficient to abolish its molecular and tumor suppressor functions
Parafermionic edge zero modes in Z_n-invariant spin chains
A sign of topological order in a gapped one-dimensional quantum chain is the
existence of edge zero modes. These occur in the Z_2-invariant Ising/Majorana
chain, where they can be understood using free-fermion techniques. Here I
discuss their presence in spin chains with Z_n symmetry, and prove that for
appropriate coupling they are exact, even in this strongly interacting system.
These modes are naturally expressed in terms of parafermions, generalizations
of fermions to the Z_n case. I show that parafermionic edge zero modes do not
occur in the usual ferromagnetic and antiferromagnetic cases, but rather only
when the interactions are chiral, so that spatial-parity and time-reversal
symmetries are broken.Comment: 22 pages. v2: small changes, added reference
Scalable Designs for Quasiparticle-Poisoning-Protected Topological Quantum Computation with Majorana Zero Modes
We present designs for scalable quantum computers composed of qubits encoded
in aggregates of four or more Majorana zero modes, realized at the ends of
topological superconducting wire segments that are assembled into
superconducting islands with significant charging energy. Quantum information
can be manipulated according to a measurement-only protocol, which is
facilitated by tunable couplings between Majorana zero modes and nearby
semiconductor quantum dots. Our proposed architecture designs have the
following principal virtues: (1) the magnetic field can be aligned in the
direction of all of the topological superconducting wires since they are all
parallel; (2) topological -junctions are not used, obviating possible
difficulties in their fabrication and utilization; (3) quasiparticle poisoning
is abated by the charging energy; (4) Clifford operations are executed by a
relatively standard measurement: detection of corrections to quantum dot
energy, charge, or differential capacitance induced by quantum fluctuations;
(5) it is compatible with strategies for producing good approximate magic
states.Comment: 34 pages, 17 figures; v4: minor changes, final versio
Topological orbital ladders
We unveil a topological phase of interacting fermions on a two-leg ladder of
unequal parity orbitals, derived from the experimentally realized double-well
lattices by dimension reduction. topological invariant originates simply
from the staggered phases of -orbital quantum tunneling, requiring none of
the previously known mechanisms such as spin-orbit coupling or artificial gauge
field. Another unique feature is that upon crossing over to two dimensions with
coupled ladders, the edge modes from each ladder form a parity-protected flat
band at zero energy, opening the route to strongly correlated states controlled
by interactions. Experimental signatures are found in density correlations and
phase transitions to trivial band and Mott insulators.Comment: 12 pages, 5 figures, Revised title, abstract, and the discussion on
Majorana numbe
Coulomb-assisted braiding of Majorana fermions in a Josephson junction array
We show how to exchange (braid) Majorana fermions in a network of
superconducting nanowires by control over Coulomb interactions rather than
tunneling. Even though Majorana fermions are charge-neutral quasiparticles
(equal to their own antiparticle), they have an effective long-range
interaction through the even-odd electron number dependence of the
superconducting ground state. The flux through a split Josephson junction
controls this interaction via the ratio of Josephson and charging energies,
with exponential sensitivity. By switching the interaction on and off in
neighboring segments of a Josephson junction array, the non-Abelian braiding
statistics can be realized without the need to control tunnel couplings by gate
electrodes. This is a solution to the problem how to operate on topological
qubits when gate voltages are screened by the superconductor
Bulk electronic state of superconducting topological insulator
We study electronic properties of a superconducting topological insulator
whose parent material is a topological insulator. We calculate the temperature
dependence of the specific heat and spin susceptibility for four promising
superconducting pairings proposed by L. Fu and E. Berg (Phys. Rev. Lett. 105,
097001). Since the line shapes of temperature dependence of specific heat are
almost identical among three of the four pairings, it is difficult to identify
them simply from the specific heat. On the other hand, we obtain wide varieties
of the temperature dependence of spin susceptibility for each pairing
reflecting the spin structure of Cooper pair. We propose that the pairing
symmetry of superconducting topological insulator can be determined from
measurement of Knight shift by changing the direction of applied magnetic
field.Comment: 12 pages, 15 figures. Accepted for publication in J. Phys. Soc. Jp
- …
