5,433 research outputs found
RCTS: A flexible environment for sensor integration and control of robot systems; the distributed processing approach
Most robot systems lack a suitable hardware and software environment for the efficient research of new control and sensing schemes. Typically, engineers and researchers need to be experts in control, sensing, programming, communication and robotics in order to implement, integrate and test new ideas in a robot system. In order to reduce this time, the Robot Controller Test Station (RCTS) has been developed. It uses a modular hardware and software architecture allowing easy physical and functional reconfiguration of a robot. This is accomplished by emphasizing four major design goals: flexibility, portability, ease of use, and ease of modification. An enhanced distributed processing version of RCTS is described. It features an expanded and more flexible communication system design. Distributed processing results in the availability of more local computing power and retains the low cost of microprocessors. A large number of possible communication, control and sensing schemes can therefore be easily introduced and tested, using the same basic software structure
Parallel Implementation of the PHOENIX Generalized Stellar Atmosphere Program
We describe the parallel implementation of our generalized stellar atmosphere
and NLTE radiative transfer computer program PHOENIX. We discuss the parallel
algorithms we have developed for radiative transfer, spectral line opacity, and
NLTE opacity and rate calculations. Our implementation uses a MIMD design based
on a relatively small number of MPI library calls. We report the results of
test calculations on a number of different parallel computers and discuss the
results of scalability tests.Comment: To appear in ApJ, 1997, vol 483. LaTeX, 34 pages, 3 Figures, uses
AASTeX macros and styles natbib.sty, and psfig.st
Phase-Dependent Properties of Extrasolar Planet Atmospheres
Recently the Spitzer Space Telescope observed the transiting extrasolar
planets, TrES-1 and HD209458b. These observations have provided the first
estimates of the day side thermal flux from two extrasolar planets orbiting
Sun-like stars. In this paper, synthetic spectra from atmospheric models are
compared to these observations. The day-night temperature difference is
explored and phase-dependent flux densities are predicted for both planets. For
HD209458b and TrES-1, models with significant day-to-night energy
redistribution are required to reproduce the observations. However, the
observational error bars are large and a range of models remains viable.Comment: 8 pages, 7 figures, accepted for publication in the Astrophysical
Journa
Atmospheres from very low-mass stars to extrasolar planets
Within the next few years, several instruments aiming at imaging extrasolar
planets will see first light. In parallel, low mass planets are being searched
around red dwarfs which offer more favorable conditions, both for radial
velocity detection and transit studies, than solar-type stars. We review recent
advancements in modeling the stellar to substellar transition. The revised
solar oxygen abundances and cloud models allow to reproduce the photometric and
spectroscopic properties of this transition to a degree never achieved before,
but problems remain in the important M-L transition characteristic of the
effective temperature range of characterizable exoplanets.Comment: submitted to Memorie della Societa Astronomica Italian
The NextGen Model Atmosphere grid: II. Spherically symmetric model atmospheres for giant stars with effective temperatures between 3000 and 6800~K
We present the extension of our NextGen model atmosphere grid to the regime
of giant stars. The input physics of the models presented here is nearly
identical to the NextGen dwarf atmosphere models, however spherical geometry is
used self-consistently in the model calculations (including the radiative
transfer). We re-visit the discussion of the effects of spherical geometry on
the structure of the atmospheres and the emitted spectra and discuss the
results of NLTE calculations for a few selected models.Comment: ApJ, in press (November 1999), 13 pages, also available at
http://dilbert.physast.uga.edu/~yeti/PAPERS and at
ftp://calvin.physast.uga.edu/pub/preprints/NG-giants.ps.g
Progress in Modeling Very Low Mass Stars, Brown Dwarfs, and Planetary Mass Objects
We review recent advancements in modeling the stellar to substellar
transition. The revised molecular opacities, solar oxygen abundances and cloud
models allow to reproduce the photometric and spectroscopic properties of this
transition to a degree never achieved before, but problems remain in the
important M-L transition characteristic of the effective temperature range of
characterizable exoplanets. We discuss of the validity of these classical
models. We also present new preliminary global Radiation HydroDynamical M
dwarfs simulations.Comment: Submitted to Mem. S. A. It. Supp
Observations on White Grubs Affecting Sugar Cane at the Juba Sugar Project, South-Western Somalia, in the 1980s, and Implications for Their Management
The article reports some observations on white grubs affecting sugarcane at the Juba Sugar Project, in South-Western Somalia, in the 1980s, and the implications for their management.Maqaalku wuxuu ka hadlayaa arrimo la xiriira dixiriyaha cad ee waxyeeleeyo qasabka sonkorta ee mashruuca sonkorta ee Jubba. Baaritaankaas waxaa lagu sameeyey koofur-galbeed ee Soomaaliya sannadka 1980.L'articolo riporta alcune osservazioni su larve bianche che colpiscono la canna da zucchero nell'ambito del Juba Sugar Project, svoltosi nel sud-ovest della Somalia negli anni 1980, e le relative implicazioni per la loro gestione
Steady-state MreB helices inside bacteria: dynamics without motors
Within individual bacteria, we combine force-dependent polymerization
dynamics of individual MreB protofilaments with an elastic model of
protofilament bundles buckled into helical configurations. We use variational
techniques and stochastic simulations to relate the pitch of the MreB helix,
the total abundance of MreB, and the number of protofilaments. By comparing our
simulations with mean-field calculations, we find that stochastic fluctuations
are significant. We examine the quasi-static evolution of the helical pitch
with cell growth, as well as timescales of helix turnover and denovo
establishment. We find that while the body of a polarized MreB helix treadmills
towards its slow-growing end, the fast-growing tips of laterally associated
protofilaments move towards the opposite fast-growing end of the MreB helix.
This offers a possible mechanism for targeted polar localization without
cytoplasmic motor proteins.Comment: 7 figures, 1 tabl
- …
