1,514 research outputs found
Frequency-dependent time-delays for strong outbursts in selected blazars from the Metsähovi and the University of Michigan Radio Astronomy Observatory monitoring databases – I
The combined data of the University of Michigan Radio Astronomy Observatory and Metsähovi Radio Observatory provide us with radio light curves for active galactic nuclei monitored by both observatories from 4.8 to 37 GHz covering time-intervals up to similar to 25 yr. We consider here such composite light curves for four gamma-ray blazars that have been nearly continuously monitored at both observatories: 0458-020, 0528+134, 1730-130 and 2230+114. We have decomposed the most prominent outbursts in the light curves of these four blazars into individual components using Gaussian model fitting, and estimated the epochs, amplitudes, and half-widths of these components as functions of frequency. We attempt to distinguish 'core outbursts', which show frequency-dependent time-delays and are associated with brightening of the core, from 'jet outbursts', which appear nearly synchronous at all frequencies and are accompanied by the emergence of new jet components and their subsequent evolution. The outbursts in 0528+134 and 2230+114 display fine structure and consist of individual sub-outbursts. Available 43-GHz Very Long Baseline Array images allow us to identify only one pure core outburst (in 2230+114) and one pure jet outburst (0458-020). Most of the outbursts analysed are mixed, in the sense that they display frequency-dependent time-delays (i.e. they are optically thick) and are associated with the eventual emergence of new jet components. The maxima of the jet and mixed outbursts probably correspond to epochs when newly ejected components become fully optically thin. These epochs are also marked by a significant increase in the angular velocities of the ejected components. There is evidence that the outbursts in 2230+114 repeat every 8.0 +/- 0.3 yr, with the positions of individual suboutbursts being preserved from one quasi-periodic eight-year cycle to another, even though their amplitudes vary by more than a factor of 2. Preliminary estimates of the total durations of possible activity cycles based on an analysis of total flux-density variations and all available very long baseline interferometry data are given for the remaining sources
Understanding BL Lac objects Structural & kinematic mode changes in the BL Lac object PKS 0735+178
Context. We present evidence that parsec-scale jets in BL Lac objects may be
significantly distinct in kinematics from their counterparts in quasars. We
argued this previously for the BL lac sources 1803+784 and 0716+714, report
here a similar pattern for another well-known BL Lac object, PKS 0735+178,
whose nuclear jet is found to exhibit kinematics atypical of quasars. Aims. A
detailed study of the jet components' motion reveals that the standard AGN
paradigm of apparent superluminal motion does not always describe the
kinematics in BL Lac objects. We study 0735+178 here to augment and improve the
understanding of the peculiar motions in the jets of BL Lac objects as a class.
Methods. We analyzed 15 GHz VLBA (Very Long Baseline Array) observations
(2cm/MOJAVE survey) performed at 23 epochs between 1995.27 and 2008.91.
Results. We found a drastic structural mode change in the VLBI jet of 0735+178,
between 2000.4 and 2001.8 when its twice sharply bent trajectory turned into a
linear shape.We further found that this jet had undergone a similar transition
sometime between December 1981 and June 1983. A mode change, occurring in the
reverse direction (between mid-1992 and mid-1995) has already been reported in
the literature. These structural mode changes are found to be reflected in
changed kinematical behavior of the nuclear jet, manifested as an apparent
superluminal motion and stationarity of the radio knots. In addition, we found
the individual mode changes to correlate in time with the maxima in the optical
light curve. The last two transitions occurred before a (modest) radio flare.
The behavior of this pc-scale jet appears to favor a scenario involving
non-ballistic motions of the radio knots, produced by the precession of a
continuous jet within the ambient medium.Comment: Accepted for publication in A&A (Abstract reduced for astro-ph
The evolution of M 2-9 from 2000 to 2010
M 2-9, the Butterfly nebula, is an outstanding representative of extreme
aspherical flows. It presents unique features such as a pair of high-velocity
dusty polar blobs and a mirror-symmetric rotating pattern in the inner lobes.
Imaging monitoring of the evolution of the nebula in the past decade is
presented. We determine the proper motions of the dusty blobs, which infer a
new distance estimate of 1.3+-0.2 kpc, a total nebular size of 0.8 pc, a speed
of 147 km/s, and a kinematical age of 2500 yr. The corkscrew geometry of the
inner rotating pattern is quantified. Different recombination timescales for
different ions explain the observed surface brightness distribution. According
to the images taken after 1999, the pattern rotates with a period of 92+-4 yr.
On the other hand, the analysis of images taken between 1952 and 1977 measures
a faster angular velocity. If the phenomenon were related to orbital motion,
this would correspond to a modest orbital eccentricity (e=0.10+-0.05), and a
slightly shorter period (86+-5 yr). New features have appeared after 2005 on
the west side of the lobes and at the base of the pattern. The geometry and
travelling times of the rotating pattern support our previous proposal that the
phenomenon is produced by a collimated spray of high velocity particles (jet)
from the central source, which excites the walls of the inner cavity of M 2-9,
rather than by a ionizing photon beam. The speed of such a jet would be
remarkable: between 11000 and 16000 km/s. The rotating-jet scenario may explain
the formation and excitation of most of the features observed in the inner
nebula, with no need for additional mechanisms, winds, or ionization sources.
All properties point to a symbiotic-like interacting binary as the central
source of M 2-9.Comment: Accepted for publication on Astronomy and Astrophysics (10 pages, 8
figures
A new look inside Planetary Nebula LoTr 5: A long-period binary with hints of a possible third component
LoTr 5 is a planetary nebula with an unusual long-period binary central star.
As far as we know, the pair consists of a rapidly rotating G-type star and a
hot star, which is responsible for the ionization of the nebula. The rotation
period of the G-type star is 5.95 days and the orbital period of the binary is
now known to be 2700 days, one of the longest in central star of
planetary nebulae. The spectrum of the G central star shows a complex H
double-peaked profile which varies with very short time scales, also reported
in other central stars of planetary nebulae and whose origin is still unknown.
We present new radial velocity observations of the central star which allow us
to confirm the orbital period for the long-period binary and discuss the
possibility of a third component in the system at 129 days to the G star.
This is complemented with the analysis of archival light curves from SuperWASP,
ASAS and OMC. From the spectral fitting of the G-type star, we obtain a
effective temperature of = 5410250 K and surface gravity of
= 2.70.5, consistent with both giant and subgiant stars. We also
present a detailed analysis of the H double-peaked profile and conclude
that it does not present correlation with the rotation period and that the
presence of an accretion disk via Roche lobe overflow is unlikely.Comment: 12 pages, 12 figures, accepted for publication in MNRA
Fluorescent Excitation of Spectral Lines in Planetary Nebulae
Fluorescent excitation of spectral lines is demonstrated as a function of
temperature-luminosity and the distance of the emitting region from the central
stars of planetary nebulae. The electron densities and temperatures are
determined, and the method is exemplified through a detailed analysis of
spectral observations of a high excitation PN, NGC 6741, observed by Hyung and
Aller(1997). Fluorescence should also be important in the determination of
element abundances. It is suggested that the method could be generally applied
to determine or constrain the luminosity and the region of spectral emission in
other intensively radiative sources such as novae, supernovae, and active
galactic nuclei.Comment: 5 pages, 4 figures (fig.4 in color), ApJ (in press
30 years of multi-wavelength observations of 3C 273
We present a wide multi-wavelength database of most observations of the
quasar 3C 273 obtained during the last 30 years. This database is the most
complete set of observations available for an active galactic nucleus (AGN). It
contains nearly 20'000 observations grouped together into 70 light curves
covering 16 orders of magnitude in frequency from the radio to the gamma-ray
domain.
The database is constituted of many previously unpublished observations and
of most publicly available data gathered in the literature and on the World
Wide Web (WWW). It is complete to the best of our knowledge, except in the
optical (UBV) domain where we chose not to add all observations from the
literature. In addition to the photometric data, we present the spectra of 3C
273 obtained by the International Ultraviolet Explorer (IUE) satellite. In the
X-ray domain, we used the spectral fit parameters from the literature to
construct the light curves.
Apart from describing the data, we show the most representative light curves
and the average spectrum of 3C 273. The database is available on the WWW in a
homogeneous and clear form and we wish to update it regularly by adding new
observations.Comment: 12 pages, 6 figures, to be published in A&AS, data available at:
http://obswww.unige.ch/3c273
- …
