1,477 research outputs found

    Preassociative aggregation functions

    Get PDF
    The classical property of associativity is very often considered in aggregation function theory and fuzzy logic. In this paper we provide axiomatizations of various classes of preassociative functions, where preassociativity is a generalization of associativity recently introduced by the authors. These axiomatizations are based on existing characterizations of some noteworthy classes of associative operations, such as the class of Acz\'elian semigroups and the class of t-norms.Comment: arXiv admin note: text overlap with arXiv:1309.730

    Gestión de la investigación en la Universidad Nacional de Cuyo (1949-2010)

    Get PDF
    La Universidad Nacional de Cuyo, desde su origen, consideró a la investigación como una de sus funciones básicas. En tal sentido este libro surge como una propuesta para sistematizar, preservar y difundir información institucional, relacionada a la gestión del área específica. La Secretaría de Ciencia, Técnica y Posgrado de esta Casa de Estudios, a fines de 2009, invitó a participar de la iniciativa a quienes fueron responsables de esta tarea y a investigadores interesados en la historia de la institución, los que aportaron información y el valor de su experiencia. En el desarrollo de la obra se puede verificar claramente la evolución de estructuras y la definición de políticas científicas desarrolladas en la UNCuyo, ligadas a momentos históricos, políticas nacionales, locales e institucionales. Del relato de cada autor se observa que: planificación, mecanismos y estrategias de promoción de la investigación manifiestan una continuidad de esfuerzos cuyo objeto es incentivar la producción del conocimiento y su transferencia a las aulas y al medio. De la compiladora de la obra: Patricia Pons, Licenciada en Ciencias De la Educación de la Pontificia Universidad Católica Argentina Santa María de los Buenos Aires; se encuentra en la etapa de finalización de sus estudios de Maestría en Gestión de la Ciencia, la Técnica y la Innovación de la Universidad Nacional de General Sarmiento; Directora General de Ciencia y Técnica de la Secretaría de Ciencia Técnica y Posgrado de la Universidad Nacional de Cuyo

    Wnt9a deficiency discloses a repressive role of Tcf7l2 on endocrine differentiation in the embryonic pancreas

    Full text link
    Transcriptional and signaling networks establish complex cross-regulatory interactions that drive cellular differentiation during development. Using microarrays we identified the gene encoding the ligand Wnt9a as a candidate target of Neurogenin3, a basic helix-loop-helix transcription factor that functions as a master regulator of pancreatic endocrine differentiation. Here we show that Wnt9a is expressed in the embryonic pancreas and that its deficiency enhances activation of the endocrine transcriptional program and increases the number of endocrine cells at birth. We identify the gene encoding the endocrine transcription factor Nkx2-2 as one of the most upregulated genes in Wnt9a-ablated pancreases and associate its activation to reduced expression of the Wnt effector Tcf7l2. Accordingly, in vitro studies confirm that Tcf7l2 represses activation of Nkx2-2 by Neurogenin3 and inhibits Nkx2-2 expression in differentiated β-cells. Further, we report that Tcf7l2 protein levels decline upon initiation of endocrine differentiation in vivo, disclosing the downregulation of this factor in the developing endocrine compartment. These findings highlight the notion that modulation of signalling cues by lineage-promoting factors is pivotal for controlling differentiation programs

    CLASP2: The Chromospheric LAyer Spectro-Polarimeter

    Get PDF
    A major remaining challenge for heliophysicsis to decipher the magnetic structure of the chromosphere, due to its "large role in defining how energy is transported into the corona and solar wind" (NASA's Heliophysics Roadmap). Recent observational advances enabled by the Interface Region Imaging Spectrometer (IRIS) have revolutionized our view of the critical role this highly dynamic interface between the photosphere and corona plays in energizing and structuring the outer solar atmosphere. Despite these advances, a major impediment to better understanding the solar atmosphere is our lack of empirical knowledge regarding the direction and strength of the magnetic field in the upper chromosphere. Such measurements are crucial to address several major unresolved issues in solar physics: for example, to constrain the energy flux carried by the Alfven waves propagating through the chromosphere (De Pontieuet al., 2014), and to determine the height at which the plasma Beta = 1 transition occurs, which has important consequences for the braiding of magnetic fields (Cirtainet al., 2013; Guerreiroet al., 2014), for propagation and mode conversion of waves (Tian et al., 2014a; Straus et al., 2008) and for non-linear force-free extrapolation methods that are key to determining what drives instabilities such as flares or coronal mass ejections (e.g.,De Rosa et al., 2009). The most reliable method used to determine the solar magnetic field vector is the observation and interpretation of polarization signals in spectral lines, associated with the Zeeman and Hanle effects. Magnetically sensitive ultraviolet spectral lines formed in the upper chromosphere and transition region provide a powerful tool with which to probe this key boundary region (e.g., Trujillo Bueno, 2014). Probing the magnetic nature of the chromosphere requires measurement of the Stokes I, Q, U and V profiles of the relevant spectral lines (of which Q, U and V encode the magnetic field information)

    Methods for the efficient measurement of phased mission system reliability and component importance

    Get PDF
    An increasing number of systems operate over a number of consecutive time periods, in which their reliability structure and the consequences of failure differ, in order to perform some overall operation. Each distinct time period is known as a phase and the overall operation is known as a phased mission. Generally, a phased mission fails immediately if the system fails at any point and is considered a success only if all phases are completed without failure. The work presented in this thesis provides efficient methods for the prediction and optimisation of phased mission reliability. A number of techniques and methods for the analysis of phased mission reliability have been previously developed. Due to the component and system failure time dependencies introduced by the phases, the computational expense of these methods is high and this limits the size of the systems that can be analysed in reasonable time frames on modern computers. Two importance measures, which provide an index of the influence of each component on the system reliability, have also been previously developed. This is useful for the optimisation of the reliability of a phased mission, however a much larger number have been developed for non-phased missions and the different perspectives and functions they provide are advantageous. This thesis introduces new methods as well as improvements and extensions to existing methods for the analysis of both non-repairable and repairable systems with an emphasis on improved efficiency in the derivation of phase and mission reliability. New importance measures for phased missions are also presented, including interpretations of those currently available for non-phased missions. These provide a number of interpretations of component importance, allowing those most suitable in a given context to be employed and thus aiding in the optimisation of mission reliability. In addition, an extensive computer code has been produced that implements and tests the majority of the newly developed techniques and methods.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Activating Generalized Fuzzy Implications from Galois Connections

    Get PDF
    This paper deals with the relation between fuzzy implications and Galois connections, trying to raise the awareness that the fuzzy implications are indispensable to generalise Formal Concept Analysis. The concrete goal of the paper is to make evident that Galois connections, which are at the heart of some of the generalizations of Formal Concept Analysis, can be interpreted as fuzzy incidents. Thus knowledge processing, discovery, exploration and visualization as well as data mining are new research areas for fuzzy implications as they are areas where Formal Concept Analysis has a niche.F.J. Valverde-Albacete—was partially supported by EU FP7 project LiMoSINe, (contract 288024). C. Peláez-Moreno—was partially supported by the Spanish Government-CICYT project 2011-268007/TEC.Publicad

    CLASP2: High-Precision Spectro-Polarimetery in Mg II h & k

    Get PDF
    The international team is promoting the CLASP2 (Chromospheric LAyer Spectro-Polarimeter 2) sounding rocket experiment, which is the re-flight of CLASP (2015). In this second flight, we will refit the existing CLASP instrument to measure all Stokes parameters in Mg II h k lines, and aim at inferring the magnetic field information in the upper chromosphere combining the Hanle and Zeeman effects. CLASP2 project was approved by NASA in December 2016, and is now scheduled to fly in 2019

    Physics and Applications of Laser Diode Chaos

    Full text link
    An overview of chaos in laser diodes is provided which surveys experimental achievements in the area and explains the theory behind the phenomenon. The fundamental physics underpinning this behaviour and also the opportunities for harnessing laser diode chaos for potential applications are discussed. The availability and ease of operation of laser diodes, in a wide range of configurations, make them a convenient test-bed for exploring basic aspects of nonlinear and chaotic dynamics. It also makes them attractive for practical tasks, such as chaos-based secure communications and random number generation. Avenues for future research and development of chaotic laser diodes are also identified.Comment: Published in Nature Photonic
    corecore