4,866 research outputs found
Nonlinear Band Structure in Bose Einstein Condensates: The Nonlinear Schr\"odinger Equation with a Kronig-Penney Potential
All Bloch states of the mean field of a Bose-Einstein condensate in the
presence of a one dimensional lattice of impurities are presented in closed
analytic form. The band structure is investigated by analyzing the stationary
states of the nonlinear Schr\"odinger, or Gross-Pitaevskii, equation for both
repulsive and attractive condensates. The appearance of swallowtails in the
bands is examined and interpreted in terms of the condensates superfluid
properties. The nonlinear stability properties of the Bloch states are
described and the stable regions of the bands and swallowtails are mapped out.
We find that the Kronig-Penney potential has the same properties as a
sinusoidal potential; Bose-Einstein condensates are trapped in sinusoidal
optical lattices. The Kronig-Penney potential has the advantage of being
analytically tractable, unlike the sinusoidal potential, and, therefore, serves
as a good model for experimental phenomena.Comment: Version 2. Fixed typos, added referenc
To dash or to dawdle: verb-associated speed of motion influences eye movements during spoken sentence comprehension
In describing motion events verbs of manner provide information about the speed of agents or objects in those events. We used eye tracking to investigate how inferences about this verb-associated speed of motion would influence the time course of attention to a visual scene that matched an event described in language. Eye movements were recorded as participants heard spoken sentences with verbs that implied a fast (“dash”) or slow (“dawdle”) movement of an agent towards a goal. These sentences were heard whilst participants concurrently looked at scenes depicting the agent and a path which led to the goal object. Our results indicate a mapping of events onto the visual scene consistent with participants mentally simulating the movement of the agent along the path towards the goal: when the verb implies a slow manner of motion, participants look more often and longer along the path to the goal; when the verb implies a fast manner of motion, participants tend to look earlier at the goal and less on the path. These results reveal that event comprehension in the presence of a visual world involves establishing and dynamically updating the locations of entities in response to linguistic descriptions of events
Natural cutaneous anthrax infection, but not vaccination, induces a CD4(+) T cell response involving diverse cytokines.
Neutrino Physics and Nuclear Axial Two-Body Interactions
We consider the counter-term describing isoscalar axial two-body currents in
the nucleon-nucleon interaction, L1A, in the effective field theory approach.
We determine this quantity using the solar neutrino data. We investigate the
variation of L1A when different sets of data are used.Comment: 8 pages with 4 figures. To be published in the Proceedings of the
Conference "Blueprints For The Nucleus: From First Principles to Collective
Motion" held at Feza Gursey Institute, Istanbul, Turkey; May 17 -22, 200
Langevin Thermostat for Rigid Body Dynamics
We present a new method for isothermal rigid body simulations using the
quaternion representation and Langevin dynamics. It can be combined with the
traditional Langevin or gradient (Brownian) dynamics for the translational
degrees of freedom to correctly sample the NVT distribution in a simulation of
rigid molecules. We propose simple, quasi-symplectic second-order numerical
integrators and test their performance on the TIP4P model of water. We also
investigate the optimal choice of thermostat parameters.Comment: 15 pages, 13 figures, 1 tabl
Allelomimesis as universal clustering mechanism for complex adaptive systems
Animal and human clusters are complex adaptive systems and many are organized
in cluster sizes that obey the frequency-distribution . Exponent describes the relative abundance of the cluster
sizes in a given system. Data analyses have revealed that real-world clusters
exhibit a broad spectrum of -values, . We show that allelomimesis is a
fundamental mechanism for adaptation that accurately explains why a broad
spectrum of -values is observed in animate, human and inanimate cluster
systems. Previous mathematical models could not account for the phenomenon.
They are hampered by details and apply only to specific systems such as cities,
business firms or gene family sizes. Allelomimesis is the tendency of an
individual to imitate the actions of its neighbors and two cluster systems
yield different values if their component agents display different
allelomimetic tendencies. We demonstrate that allelomimetic adaptation are of
three general types: blind copying, information-use copying, and non-copying.
Allelomimetic adaptation also points to the existence of a stable cluster size
consisting of three interacting individuals.Comment: 8 pages, 5 figures, 2 table
Noise Can Reduce Disorder in Chaotic Dynamics
We evoke the idea of representation of the chaotic attractor by the set of
unstable periodic orbits and disclose a novel noise-induced ordering
phenomenon. For long unstable periodic orbits forming the strange attractor the
weights (or natural measure) is generally highly inhomogeneous over the set,
either diminishing or enhancing the contribution of these orbits into system
dynamics. We show analytically and numerically a weak noise to reduce this
inhomogeneity and, additionally to obvious perturbing impact, make a
regularizing influence on the chaotic dynamics. This universal effect is rooted
into the nature of deterministic chaos.Comment: 11 pages, 5 figure
Non-Hamiltonian dynamics in optical microcavities resulting from wave-inspired corrections to geometric optics
We introduce and investigate billiard systems with an adjusted ray dynamics
that accounts for modifications of the conventional reflection of rays due to
universal wave effects. We show that even small modifications of the specular
reflection law have dramatic consequences on the phase space of classical
billiards. These include the creation of regions of non-Hamiltonian dynamics,
the breakdown of symmetries, and changes in the stability and morphology of
periodic orbits. Focusing on optical microcavities, we show that our adjusted
dynamics provides the missing ray counterpart to previously observed wave
phenomena and we describe how to observe its signatures in experiments. Our
findings also apply to acoustic and ultrasound waves and are important in all
situations where wavelengths are comparable to system sizes, an increasingly
likely situation considering the systematic reduction of the size of electronic
and photonic devices.Comment: 6 pages, 4 figures, final published versio
Languages cool as they expand: Allometric scaling and the decreasing need for new words
We analyze the occurrence frequencies of over 15 million words recorded in millions of books published during the past two centuries in seven different languages. For all languages and chronological subsets of the data we confirm that two scaling regimes characterize the word frequency distributions, with only the more common words obeying the classic Zipf law. Using corpora of unprecedented size, we test the allometric scaling relation between the corpus size and the vocabulary size of growing languages to demonstrate a decreasing marginal need for new words, a feature that is likely related to the underlying correlations between words. We calculate the annual growth fluctuations of word use which has a decreasing trend as the corpus size increases, indicating a slowdown in linguistic evolution following language expansion. This ‘‘cooling pattern’’ forms the basis of a third statistical regularity, which unlike the Zipf and the Heaps law, is dynamical in nature
- …
