489 research outputs found
Particle dynamics near extreme Kerr throat and supersymmetry
The extreme Kerr throat solution is believed to be non-supersymmetric.
However, its isometry group SO(2,1) x U(1) matches precisely the bosonic
subgroup of N=2 superconformal group in one dimension. In this paper we
construct N=2 supersymmetric extension of a massive particle moving near the
horizon of the extreme Kerr black hole. Bosonic conserved charges are related
to Killing vectors in a conventional way. Geometric interpretation of
supersymmetry charges remains a challenge.Comment: V2: 10 pages; discussion in sect. 4 and 5 extended, acknowledgements
and references adde
Holographic description of Kerr-Bolt-AdS-dS Spacetimes
We show that there exists a holographic 2D CFT description of a
Kerr-Bolt-AdS-dS spacetime. We first consider the wave equation of a massless
scalar field propagating in extremal Kerr-Bolt-AdS-dS spacetimes and find in
the "near region", the wave equation in extremal limit could be written in
terms of the quadratic Casimir. This suggests that there exist dual
CFT descriptions of these black holes. In the probe limit, we compute the
scattering amplitudes of the scalar off the extremal black holes and find
perfect agreement with the CFT prediction. Furthermore we study the holographic
description of the generic four dimensional non-extremal Kerr-Bolt-AdS-dS black
holes. We find that if focusing on the near-horizon region, for the massless
scalar scattering in the low-frequency limit, the radial equation could still
be rewritten as the quadratic Casimir, suggesting the existence of
dual 2D description. We read the temperatures of the dual CFT from the
conformal coordinates and obtain the central charges by studying the
near-horizon geometry of near-extremal black holes. We recover the macroscopic
entropy from the microscopic counting. We also show that for the superradiant
scattering, the retarded Green's functions and the corresponding absorption
cross sections are in perfect match with CFT prediction.Comment: 17 pages, typos corrected, references adde
The RN/CFT Correspondence Revisited
We reconsidered the quantum gravity description of the near horizon extremal
Reissner-Nordstr{\o}m black hole in the viewpoint of the AdS/CFT
correspondence. We found that, for pure electric case, the right moving central
charge of dual 1D CFT is which is different from the previous result of left moving sector obtained by warped AdS/CFT description. We
discussed the discrepancy in these two approaches and examined novel properties
of our result.Comment: revtex4, 16 pages, sign mistakes corrected, references include
The 21 cm Signature of Shock Heated and Diffuse Cosmic String Wakes
The analysis of the 21 cm signature of cosmic string wakes is extended in
several ways. First we consider the constraints on from the absorption
signal of shock heated wakes laid down much later than matter radiation
equality. Secondly we analyze the signal of diffuse wake, that is those wakes
in which there is a baryon overdensity but which have not shock heated. Finally
we compare the size of these signals compared to the expected thermal noise per
pixel which dominates over the background cosmic gas brightness temperature and
find that the cosmic string signal will exceed the thermal noise of an
individual pixel in the Square Kilometre Array for string tensions .Comment: 10 pages, 4 figures, Appendix added, version published in JCA
Microscopic Realization of the Kerr/CFT Correspondence
Supersymmetric M/string compactifications to five dimensions contain BPS
black string solutions with magnetic graviphoton charge P and near-horizon
geometries which are quotients of AdS_3 x S^2. The holographic duals are
typically known 2D CFTs with central charges c_L=c_R=6P^3 for large P. These
same 5D compactifications also contain non-BPS but extreme Kerr-Newman black
hole solutions with SU(2)_L spin J_L and electric graviphoton charge Q obeying
Q^3 \leq J_L^2. It is shown that in the maximally charged limit Q^3 -> J_L^2,
the near-horizon geometry coincides precisely with the right-moving temperature
T_R=0 limit of the black string with magnetic charge P=J_L^{1/3}. The known
dual of the latter is identified as the c_L=c_R=6J_L CFT predicted by the
Kerr/CFT correspondence. Moreover, at linear order away from maximality, one
finds a T_R \neq 0 quotient of the AdS_3 factor of the black string solution
and the associated thermal CFT entropy reproduces the linearly sub-maximal
Kerr-Newman entropy. Beyond linear order, for general Q^3<J_L^2, one has a
finite-temperature quotient of a warped deformation of the magnetic string
geometry. The corresponding dual deformation of the magnetic string CFT
potentially supplies, for the general case, the c_L=c_R=6J_L CFT predicted by
Kerr/CFT.Comment: 18 pages, no figure
Conformal field theories in anti-de Sitter space
In this paper we discuss the dynamics of conformal field theories on anti-de
Sitter space, focussing on the special case of the N=4 supersymmetric
Yang-Mills theory on AdS_4. We argue that the choice of boundary conditions, in
particular for the gauge field, has a large effect on the dynamics. For
example, for weak coupling, one of two natural choices of boundary conditions
for the gauge field leads to a large N deconfinement phase transition as a
function of the temperature, while the other does not. For boundary conditions
that preserve supersymmetry, the strong coupling dynamics can be analyzed using
S-duality (relevant for g_{YM} >> 1), utilizing results of Gaiotto and Witten,
as well as by using the AdS/CFT correspondence (relevant for large N and large
't Hooft coupling). We argue that some very specific choices of boundary
conditions lead to a simple dual gravitational description for this theory,
while for most choices the gravitational dual is not known. In the cases where
the gravitational dual is known, we discuss the phase structure at large 't
Hooft coupling.Comment: 57 pages, 1 figure. v2: fixed typo
Angular 21 cm Power Spectrum of a Scaling Distribution of Cosmic String Wakes
Cosmic string wakes lead to a large signal in 21 cm redshift maps at
redshifts larger than that corresponding to reionization. Here, we compute the
angular power spectrum of 21 cm radiation as predicted by a scaling
distribution of cosmic strings whose wakes have undergone shock heating.Comment: 13 pages, 6 figures; v2: minor modifications, journal versio
A Note on Conserved Charges of Asymptotically Flat and Anti-de Sitter Spaces in Arbitrary Dimensions
The calculation of conserved charges of black holes is a rich problem, for
which many methods are known. Until recently, there was some controversy on the
proper definition of conserved charges in asymptotically anti-de Sitter (AdS)
spaces in arbitrary dimensions. This paper provides a systematic and explicit
Hamiltonian derivation of the energy and the angular momenta of both
asymptotically flat and asymptotically AdS spacetimes in any dimension D bigger
or equal to 4. This requires as a first step a precise determination of the
asymptotic conditions of the metric and of its conjugate momentum. These
conditions happen to be achieved in ellipsoidal coordinates adapted to the
rotating solutions.The asymptotic symmetry algebra is found to be isomorphic
either to the Poincare algebra or to the so(D-1, 2) algebra, as expected. In
the asymptotically flat case, the boundary conditions involve a generalization
of the parity conditions, introduced by Regge and Teitelboim, which are
necessary to make the angular momenta finite. The charges are explicitly
computed for Kerr and Kerr-AdS black holes for arbitrary D and they are shown
to be in agreement with thermodynamical arguments.Comment: 27 pages; v2 : references added, minor corrections; v3 : replaced to
match published version forthcoming in General Relativity and Gravitatio
Hidden Conformal Symmetry of Extremal Kerr-Bolt Spacetimes
We show that extremal Kerr-Bolt spacetimes have a hidden conformal symmetry.
In this regard, we consider the wave equation of a massless scalar field
propagating in extremal Kerr-Bolt spacetimes and find in the "near region", the
wave equation in extremal limit can be written in terms of the
quadratic Casimir. Moreover, we obtain the microscopic entropy of the extremal
Kerr-Bolt spacetimes also we calculate the correlation function of a
near-region scalar field and find perfect agreement with the dual 2D CFT.Comment: 13 page
Conformal mechanics inspired by extremal black holes in d=4
A canonical transformation which relates the model of a massive relativistic
particle moving near the horizon of an extremal black hole in four dimensions
and the conventional conformal mechanics is constructed in two different ways.
The first approach makes use of the action-angle variables in the angular
sector. The second scheme relies upon integrability of the system in the sense
of Liouville.Comment: V2: presentation improved, new material and references added; the
version to appear in JHE
- …
