2,715 research outputs found
A Census of the Avifauna of the FAP 301 Project Area Addenda 1 and 2
Report issued on: issued July 25, 1996INHS Technical Report prepared for Illinois Department of Transportatio
Study of sampling systems for comets and Mars
Several aspects of the techniques that can be applied to acquisition and preservation of samples from Mars and a cometary nucleus were examined. Scientific approaches to sampling, grounded in proven engineering methods are the key to achieving the maximum science value from the sample return mission. If development of these approaches for collecting and preserving does not preceed mission definition, it is likely that only suboptimal techniques will be available because of the constraints of formal schedule timelines and the normal pressure to select only the most conservative and least sophisticated approaches when development has lagged the mission milestones. With a reasonable investment now, before the final mission definition, the sampling approach can become highly developed, ready for implementation, and mature enough to help set the requirements for the mission hardware and its performance
The doubly inelastic contribution to electron loss: H0 and He0 (0,5 MeV u-1) in collision with Ar
Fingering convection and cloudless models for cool brown dwarf atmospheres
This work aims to improve the current understanding of the atmospheres of
brown dwarfs, especially cold ones with spectral type T and Y, whose modeling
is a current challenge. Silicate and iron clouds are believed to disappear at
the photosphere at the L/T transition, but cloudless models fail to reproduce
correctly the spectra of T dwarfs, advocating for the addition of more physics,
e.g. other types of clouds or internal energy transport mechanisms. We use a
one-dimensional (1D) radiative/convective equilibrium code ATMO to investigate
this issue. This code includes both equilibrium and out-of-equilibrium
chemistry and solves consistently the PT structure. Included opacity sources
are H2-H2, H2-He, H2O, CO, CO2, CH4, NH3, K, Na, and TiO, VO if they are
present in the atmosphere. We show that the spectra of Y dwarfs can be
accurately reproduced with a cloudless model if vertical mixing and NH3
quenching are taken into account. T dwarf spectra still have some reddening in
e.g. J - H compared to cloudless models. This reddening can be reproduced by
slightly reducing the temperature gradient in the atmosphere. We propose that
this reduction of the stabilizing temperature gradient in these layers, leading
to cooler structures, is due to the onset of fingering convection, triggered by
the destabilizing impact of condensation of very thin dust.Comment: Accepted in ApJ
Radiation of Neutron Stars Produced by Superfluid Core
We find that neutron star interior is transparent for collisionless electron
sound, the same way as it is transparent for neutrinos. In the presence of
magnetic field the electron sound is coupled with electromagnetic radiation and
form the fast magnetosonic wave. We find that electron sound is generated by
superfluid vortices in the stellar core. Thermally excited helical vortex waves
produce fast magnetosonic waves in the stellar crust which propagate toward the
surface and transform into outgoing electromagnetic radiation. The vortex
radiation has the spectral index -0.45 and can explain nonthermal radiation of
middle-aged pulsars observed in the infrared, optical and hard X-ray bands. The
radiation is produced in the stellar interior which allows direct determination
of the core temperature. Comparing the theory with available spectra
observations we find that the core temperature of the Vela pulsar is T=8*10^8K,
while the core temperature of PSR B0656+14 and Geminga exceeds 2*10^8K. This is
the first measurement of the temperature of a neutron star core. The
temperature estimate rules out equation of states incorporating Bose
condensations of pions or kaons and quark matter in these objects. Based on the
temperature estimate and cooling models we determine the critical temperature
of triplet neutron superfluidity in the Vela core Tc=(7.5\pm 1.5)*10^9K which
agrees well with recent data on behavior of nucleon interactions at high
energies. Another finding is that in the middle aged neutron stars the vortex
radiation, rather then thermal conductivity, is the main mechanism of heat
transfer from the stellar core to the surface. Electron sound opens a
perspective of direct spectroscopic study of superdense matter in the neutron
star interiors.Comment: 43 pages, 7 figures, to appear in Astrophysical Journa
Superfluid Phase Transitions in Dense Neutron Matter
The phase transitions in a realistic system with triplet pairing, dense
neutron matter, have been investigated. The spectrum of phases of the
model, which adequately describes pairing in this system, is
analytically constructed with the aid of a separation method for solving BCS
gap equation in states of arbitrary angular momentum. In addition to solutions
involving a single value of the magnetic quantum number (and its negative),
there exist ten real multicomponent solutions. Five of the corresponding
angle-dependent order parameters have nodes, and five do not. In contrast to
the case of superfluid He, transitions occur between phases with nodeless
order parameters. The temperature dependence of the competition between the
various phases is studied.Comment: 11 pages, 2 figure
Heat kernel estimates and spectral properties of a pseudorelativistic operator with magnetic field
Based on the Mehler heat kernel of the Schroedinger operator for a free
electron in a constant magnetic field an estimate for the kernel of E_A is
derived, where E_A represents the kinetic energy of a Dirac electron within the
pseudorelativistic no-pair Brown-Ravenhall model. This estimate is used to
provide the bottom of the essential spectrum for the two-particle
Brown-Ravenhall operator, describing the motion of the electrons in a central
Coulomb field and a constant magnetic field, if the central charge is
restricted to Z below or equal 86
Polyunsaturated fatty acids in fishes increase with total lipids irrespective of feeding sources and trophic position
Trophic transfer and retention of dietary compounds are vital for somatic development, reproduction, and survival of aquatic consumers. In this field study, stable carbon and nitrogen isotopes, and fatty acids (FA) contents in invertebrates and fishes of pre-alpine Lake Lunz, Austria, were used to (1) identify the resource use and trophic level of Arctic charr (Salvelinus alpinus), pike (Esox lucius), perch (Perca fluviatilis), brown trout (Salmo trutta), roach (Rutilus rutilus), and minnow (Phoxinus phoxinus) and (2) examine how polyunsaturated fatty acids (PUFA; i.e., omega-3 and -6 PUFA) are related to total lipid status, littoral-pelagic reliance, and trophic position. Stable isotope data suggest that pike, perch, and minnow derived most of their energy from littoral resources, but minnows differed from pike and perch in their trophic position and PUFA composition. The co-occurrence of cyprinids, percids, and pike segregated these fishes into more lipid-rich (roach, minnow) and lipid-poor (pike, percids) species. Although the relatively lipid-poor pike and percids occupied a higher trophic position than cyprinids, there was a concurrent, total lipid-dependent decline in omega-3 and -6 PUFA in these predatory fishes. Results of this lake food-web study demonstrated that total lipids in fish community, littoral-pelagic reliance, and trophic position explained omega-3 and -6 PUFA in dorsal muscle tissues. Omega-3 and -6 PUFA in these fishes decreased with increasing trophic position, demonstrating that these essential FAs did not biomagnify with increasing trophic level. Finally, this lake food-web study provides evidence of fish community-level relationship between total lipid status and PUFA or stable isotope ratios, whereas the strength of such relationships was less strong at the species level.Peer reviewe
Heavy-Meson Observables at One-Loop in Partially Quenched Chiral Perturbation Theory
I present one-loop level calculations of the Isgur-Wise functions for B ->
D^{(*)} + e + nu, of the matrix elements of isovector twist-2 operators in B
and D mesons, and the matrix elements for the radiative decays D^* -> D + gamma
in partially quenched heavy quark chiral perturbation theory. Such expressions
are required in order to extrapolate from the light quark masses used in
lattice simulations of the foreseeable future to those of nature.Comment: 13 pages, 3 fig
Minimal Cooling of Neutron Stars: A New Paradigm
A new classification of neutron star cooling scenarios, involving either
``minimal'' cooling or ``enhanced'' cooling is proposed. The minimal cooling
scenario replaces and extends the so-called standard cooling scenario to
include neutrino emission from the Cooper pair breaking and formation process.
This emission dominates that due to the modified Urca process for temperatures
close to the critical temperature for superfluid pairing. Minimal cooling is
distinguished from enhanced cooling by the absence of neutrino emission from
any direct Urca process, due either to nucleons or to exotica. Within the
minimal cooling scenario, theoretical cooling models can be considered to be a
four parameter family involving the equation of state of dense matter,
superfluid properties of dense matter, the composition of the neutron star
envelope, and the mass of the neutron star. Consequences of minimal cooling are
explored through extensive variations of these parameters. Results are compared
with the inferred properties of thermally-emitting neutron stars in order to
ascertain if enhanced cooling occurs in any of them. All stars for which
thermal emissions have been clearly detected are at least marginally consistent
with the lack of enhanced cooling. The two pulsars PSR 0833-45 (Vela) and PSR
1706-44 would require enhanced cooling in case their ages and/or temperatures
are on the lower side of their estimated values whereas the four stars PSR
0656+14, PSR 1055-52, Geminga, and RX J0720.4-3125 may require some source of
internal heating in case their age and/or luminosity are on the upper side of
their estimated values. The new upper limits on the thermal luminosity of PSR
J0205+6449 and RX J0007.0+7302 are indicative of the occurrence of some
enhanced neutrino emission beyond the minimal scenario.Comment: Version to appear in ApJ Supplements. Minor modifications in text and
discussion of updated data with new figure
- …
