22,719 research outputs found
The effect of ring distortions on buckling of blunt conical shells
A rigorous analytical study of cones stiffened by many thin-gage, open-section rings is presented. The results are compared with data previously obtained from uniform pressure tests of the Viking mission flight aeroshell and of the Viking structural prototype aeroshells. A conventional analysis, in which the rings are modeled as discrete rigid cross sections, is shown to lead to large, unconservative strength predictions. A more sophisticated technique of modeling the rings as shell branches leads to much more realistic strength predictions and more accurately predicts the failure modes. It is also shown that if a small initial imperfection proportional to the shape of the buckling mode is assumed, the critical buckling modes from analysis and test are in agreement. However, the reduction in buckling strength from the perfect-shell predictions is small
A study of the drooped leading edge airfoil
Wind tunnel tests were conducted to examine various aspects of the drooped-leading edge airfoil which reduces the tendency for an airplane to enter a spin after stall occurs. Three baseline models were used for tests of two dimensional models: NACA 0015, 0014.6, and 0014.2. The 14.6% and 14.2% models were derived from NACA 0015 sections by increasing the chord and matching the profiles aft section. Force, balance data (lift, drag, pitching moment) were obtained for each model at a free-steam Reynold's number of 2.66 x 10 to the 6th power/m. In addition, oil flow visualization tests were performed at various angles of attack. An existing NACA 64 sub 1 A211 airfoil was used in a second series of tests. The leading edge flap was segmented in three parts which allowed various baseline/drooped leading edge configurations to be tested. Force balance and flow visualization tests were completer at chord Renolds numbers of 0.44 x 10 to the 6th power, 1.4 x 10 to the 6th power, and 2.11 x 10 to the 6th power. Test results are included
Ohmic contacts to GaAs for high-temperature device applications
Ohmic contacts to n-type GaAs were developed for high temperature device applications up to 300 C. Refractory metallizations were used with epitaxial Ge layers to form the contacts: TiW/Ge/GaAs, Ta/Ge/GaAs, Mo/Ge/GaAs, and Ni/Ge/GaAs. Contacts with high dose Si or Se ion implantation of the Ge/GaAs interface were also investigated. The contacts were fabricated on epitaxial GaAs layer grown on N+ or semi-insulating GaAs substrates. Ohmic contact was formed by both thermal annealing (at temperatures up to 700 C) and laser annealing (pulsed Ruby). Examination of the Ge/GaAs interface revealed Ge migration into GaAs to form an N+ doping layer. The specific contact resistances of specimens annealed by both methods are given
User's manual for Axisymmetric Diffuser Duct (ADD) code. Volume 1: General ADD code description
This User's Manual contains a complete description of the computer codes known as the AXISYMMETRIC DIFFUSER DUCT code or ADD code. It includes a list of references which describe the formulation of the ADD code and comparisons of calculation with experimental flows. The input/output and general use of the code is described in the first volume. The second volume contains a detailed description of the code including the global structure of the code, list of FORTRAN variables, and descriptions of the subroutines. The third volume contains a detailed description of the CODUCT code which generates coordinate systems for arbitrary axisymmetric ducts
Methodology of measuring internal contamination in spacecraft hardware Final report
Methodology of measuring internal contamination in spacecraft hardwar
Poly/vinyl ethers/ synthesis for fundamental study of viscoelastic state Final report
Large scale synthesis of amorphous poly/vinyl ethers/ for viscoelastic state stud
Tree-Independent Dual-Tree Algorithms
Dual-tree algorithms are a widely used class of branch-and-bound algorithms.
Unfortunately, developing dual-tree algorithms for use with different trees and
problems is often complex and burdensome. We introduce a four-part logical
split: the tree, the traversal, the point-to-point base case, and the pruning
rule. We provide a meta-algorithm which allows development of dual-tree
algorithms in a tree-independent manner and easy extension to entirely new
types of trees. Representations are provided for five common algorithms; for
k-nearest neighbor search, this leads to a novel, tighter pruning bound. The
meta-algorithm also allows straightforward extensions to massively parallel
settings.Comment: accepted in ICML 201
Aerodynamic design of the contoured wind-tunnel liner for the NASA supercritical, laminar-flow-control, swept-wing experiment
An overview is presented of the entire procedure developed for the aerodynamic design of the contoured wind tunnel liner for the NASA supercritical, laminar flow control (LFC), swept wing experiment. This numerical design procedure is based upon the simple idea of streamlining and incorporates several transonic and boundary layer analysis codes. The liner, presently installed in the Langley 8 Foot Transonic Pressure Tunnel, is about 54 ft long and extends from within the existing contraction cone, through the test section, and into the diffuser. LFC model testing has begun and preliminary results indicate that the liner is performing as intended. The liner design results presented in this paper, however, are examples of the calculated requirements and the hardware implementation of them
Langley Mach 4 scramjet test facility
An engine test facility was constructed at the NASA Langley Research Center in support of a supersonic combustion ramjet (scramjet) technology development program. Hydrogen combustion in air with oxygen replenishment provides simulated air at Mach 4 flight velocity, pressure, and true total temperature for an altitude range from 57,000 to 86,000 feet. A facility nozzle with a 13 in square exit produces a Mach 3.5 free jet flow for engine propulsion tests. The facility is described and calibration results are presented which demonstrate the suitability of the test flow for conducting scramjet engine research
Size Gap for Zero Temperature Black Holes in Semiclassical Gravity
We show that a gap exists in the allowed sizes of all zero temperature static
spherically symmetric black holes in semiclassical gravity when only
conformally invariant fields are present. The result holds for both charged and
uncharged black holes. By size we mean the proper area of the event horizon.
The range of sizes that do not occur depends on the numbers and types of
quantized fields that are present. We also derive some general properties that
both zero and nonzero temperature black holes have in all classical and
semiclassical metric theories of gravity.Comment: 4 pages, ReVTeX, no figure
- …
