1,065 research outputs found
Active Sampling-based Binary Verification of Dynamical Systems
Nonlinear, adaptive, or otherwise complex control techniques are increasingly
relied upon to ensure the safety of systems operating in uncertain
environments. However, the nonlinearity of the resulting closed-loop system
complicates verification that the system does in fact satisfy those
requirements at all possible operating conditions. While analytical proof-based
techniques and finite abstractions can be used to provably verify the
closed-loop system's response at different operating conditions, they often
produce conservative approximations due to restrictive assumptions and are
difficult to construct in many applications. In contrast, popular statistical
verification techniques relax the restrictions and instead rely upon
simulations to construct statistical or probabilistic guarantees. This work
presents a data-driven statistical verification procedure that instead
constructs statistical learning models from simulated training data to separate
the set of possible perturbations into "safe" and "unsafe" subsets. Binary
evaluations of closed-loop system requirement satisfaction at various
realizations of the uncertainties are obtained through temporal logic
robustness metrics, which are then used to construct predictive models of
requirement satisfaction over the full set of possible uncertainties. As the
accuracy of these predictive statistical models is inherently coupled to the
quality of the training data, an active learning algorithm selects additional
sample points in order to maximize the expected change in the data-driven model
and thus, indirectly, minimize the prediction error. Various case studies
demonstrate the closed-loop verification procedure and highlight improvements
in prediction error over both existing analytical and statistical verification
techniques.Comment: 23 page
Microlensing in H1413+117 : disentangling line profile emission and absorption in a broad absorption line quasar
On the basis of 16 years of spectroscopic observations of the four components
of the gravitationally lensed broad absorption line (BAL) quasar H1413+117,
covering the ultraviolet to visible rest-frame spectral range, we analyze the
spectral differences observed in the P Cygni-type line profiles and have used
the microlensing effect to derive new clues to the BAL profile formation. We
confirm that the spectral differences observed in component D can be attributed
to a microlensing effect lasting at least a decade. We show that microlensing
magnifies the continuum source in image D, leaving the emission line region
essentially unaffected. We interpret the differences seen in the absorption
profiles of component D as the result of an emission line superimposed onto a
nearly black absorption profile. We also find that the continuum source and a
part of the broad emission line region are likely de-magnified in component C,
while components A and B are not affected by microlensing. We show that
microlensing of the continuum source in component D has a chromatic dependence
compatible with the thermal continuum emission of a standard Shakura-Sunyaev
accretion disk. Using a simple decomposition method to separate the part of the
line profiles affected by microlensing and coming from a compact region from
the part unaffected by this effect and coming from a larger region, we
disentangle the true absorption line profiles from the true emission line
profiles. The extracted emission line profiles appear double-peaked, suggesting
that the emission is occulted by a strong absorber, narrower in velocity than
the full absorption profile, and emitting little by itself. We propose that the
outflow around H1413+117 is constituted by a high-velocity polar flow and a
denser, lower velocity disk seen nearly edge-on.Comment: Accepted for publication in Astronomy and Astrophysic
Black Silicon with high density and high aspect ratio nanowhiskers
Physical properties of black Silicon (b-Si) formed on Si wafers by reactive
ion etching in chlorine plasma are reported in an attempt to clarify the
formation mechanism and the origin of the observed optical and electrical
phenomena which are promising for a variety of applications. The b-Si
consisting of high density and high aspect ratio sub-micron length whiskers or
pillars with tip diameters of well under 3 nm exhibits strong photoluminescence
(PL) both in visible and infrared, which are interpreted in conjunction with
defects, confinement effects and near band-edge emission. Structural analysis
indicate that the whiskers are all crystalline and encapsulated by a thin Si
oxide layer. Infrared vibrational spectrum of Si-O-Si bondings in terms of
transverse-optic (TO) and longitudinal-optic (LO) phonons indicates that
disorder induced LO-TO optical mode coupling can be an effective tool in
assessing structural quality of the b-Si. The same phonons are likely coupled
to electrons in visible region PL transitions. Field emission properties of
these nanoscopic features are demonstrated indicating the influence of the tip
shape on the emission. Overall properties are discussed in terms of surface
morphology of the nano whiskers
The VMC Survey - VI. Quasars behind the Magellanic system
The number and spatial distribution of confirmed quasi-stellar objects (QSOs)
behind the Magellanic system is limited. This undermines their use as
astrometric reference objects for different types of studies. We have searched
for criteria to identify candidate QSOs using observations from the VISTA
survey of the Magellanic Clouds system (VMC) that provides photometry in the
YJKs bands and 12 epochs in the Ks band. The (Y-J) versus (J-Ks) diagram has
been used to distinguish QSO candidates from Milky Way stars and stars of the
Magellanic Clouds. Then, the slope of variation in the Ks band has been used to
identify a sample of high confidence candidates. These criteria were developed
based on the properties of 117 known QSOs presently observed by the VMC survey.
VMC YJKs magnitudes and Ks light-curves of known QSOs behind the Magellanic
system are presented. About 75% of them show a slope of variation in Ks>10^-4
mag/day and the shape of the light-curve is in general irregular and without
any clear periodicity. The number of QSO candidates found in tiles including
the South Ecliptic Pole and the 30 Doradus regions is 22 and 26, respectively,
with a ~20% contamination by young stellar objects, planetary nebulae, stars
and normal galaxies. By extrapolating the number of QSO candidates to the
entire VMC survey area we expect to find about 1200 QSOs behind the LMC, 400
behind the SMC, 200 behind the Bridge and 30 behind the Stream areas, but not
all will be suitable for astrometry. Further, the Ks band light-curves can help
support investigations of the mechanism responsible for the variations.Comment: 17 pages, 15 figures, replaced with accepted version by Astronomy &
Astrophysic
Nanoinformatics: developing new computing applications for nanomedicine
Nanoinformatics has recently emerged to address the need of computing applications at the nano level. In this regard, the authors have participated in various initiatives to identify its concepts, foundations and challenges. While nanomaterials open up the possibility for developing new devices in many industrial and scientific areas, they also offer breakthrough perspectives for the prevention, diagnosis and treatment of diseases. In this paper, we analyze the different aspects of nanoinformatics and suggest five research topics to help catalyze new research and development in the area, particularly focused on nanomedicine. We also encompass the use of informatics to further the biological and clinical applications of basic research in nanoscience and nanotechnology, and the related concept of an extended ?nanotype? to coalesce information related to nanoparticles. We suggest how nanoinformatics could accelerate developments in nanomedicine, similarly to what happened with the Human Genome and other -omics projects, on issues like exchanging modeling and simulation methods and tools, linking toxicity information to clinical and personal databases or developing new approaches for scientific ontologies, among many others
A systematic fitting scheme for caustic-crossing microlensing events
We outline a method for fitting binary-lens caustic-crossing microlensing
events based on the alternative model parameterisation proposed and detailed in
Cassan (2008). As an illustration of our methodology, we present an analysis of
OGLE-2007-BLG-472, a double-peaked Galactic microlensing event with a source
crossing the whole caustic structure in less than three days. In order to
identify all possible models we conduct an extensive search of the parameter
space, followed by a refinement of the parameters with a Markov Chain-Monte
Carlo algorithm. We find a number of low-chi2 regions in the parameter space,
which lead to several distinct competitive best models. We examine the
parameters for each of them, and estimate their physical properties. We find
that our fitting strategy locates several minima that are difficult to find
with other modelling strategies and is therefore a more appropriate method to
fit this type of events.Comment: 12 pages, 11 figure
BVRI Light Curves for 29 Type Ia Supernovae
BVRI light curves are presented for 27 Type Ia supernovae discovered during
the course of the Calan/Tololo Survey and for two other SNe Ia observed during
the same period. Estimates of the maximum light magnitudes in the B, V, and I
bands and the initial decline rate parameter m15(B) are also given.Comment: 17 pages, figures and tables are not included (contact first author
if needed), to appear in the Astronomical Journa
Soporte magnético para la grabación y lectura de información, método de almacenamiento y lectura de información y su uso
Soporte magnético para la grabación y lectura de información, método de almacenamiento y lectura de información y su uso. El soporte magnético comprende un circuito magnético definido en una lámina delgada magnética con anisotropía uniaxial y un nanocomposite constituido por una red bidimensional de nanopozos asimétricos rellenos de otro material magnético de mayor coercitividad y/o anisotropía que la lámina delgada magnética. También es objeto de la invención un método de almacenamiento y lectura de información simultáneo mediante desplazamiento de paredes magnéticas y su uso en la encriptación de información. De aplicación en los sectores en los que se diseñen, produzcan o utilicen dispositivos magnéticos para el almacenamiento y lectura de información, como en los sectores de material y equipo eléctrico, electrónico y óptico, de informática, de tecnologías de la información y de la comunicación, de maquinaria y equipo mecánico, y de transportes y comunicaciones.Peer reviewedUniversidad de Oviedo, Universidad Complutense de Madrid, Consejo Superior de Investigaciones Científicas (España), Centre National de la Recherche ScientifiqueA2 Solicitud de patente sin informe sobre el estado de la técnic
Dark energy with gravitational lens time delays
Strong lensing gravitational time delays are a powerful and cost effective
probe of dark energy. Recent studies have shown that a single lens can provide
a distance measurement with 6-7 % accuracy (including random and systematic
uncertainties), provided sufficient data are available to determine the time
delay and reconstruct the gravitational potential of the deflector.
Gravitational-time delays are a low redshift (z~0-2) probe and thus allow one
to break degeneracies in the interpretation of data from higher-redshift probes
like the cosmic microwave background in terms of the dark energy equation of
state. Current studies are limited by the size of the sample of known lensed
quasars, but this situation is about to change. Even in this decade, wide field
imaging surveys are likely to discover thousands of lensed quasars, enabling
the targeted study of ~100 of these systems and resulting in substantial gains
in the dark energy figure of merit. In the next decade, a further order of
magnitude improvement will be possible with the 10000 systems expected to be
detected and measured with LSST and Euclid. To fully exploit these gains, we
identify three priorities. First, support for the development of software
required for the analysis of the data. Second, in this decade, small robotic
telescopes (1-4m in diameter) dedicated to monitoring of lensed quasars will
transform the field by delivering accurate time delays for ~100 systems. Third,
in the 2020's, LSST will deliver 1000's of time delays; the bottleneck will
instead be the aquisition and analysis of high resolution imaging follow-up.
Thus, the top priority for the next decade is to support fast high resolution
imaging capabilities, such as those enabled by the James Webb Space Telescope
and next generation adaptive optics systems on large ground based telescopes.Comment: White paper submitted to SNOWMASS201
- …
