919 research outputs found
Conveying Audience Emotions through Humanoid Robot Gestures to an Orchestra during a Live Musical Exhibition
In the last twenty years, robotics have been applied in many
heterogeneous contexts. Among them, the use of humanoid robots during
musical concerts have been proposed and investigated by many authors.
In this paper, we propose a contribution in the area of robotics application
in music, consisting of a system for conveying audience emotions
during a live musical exhibition, by means of a humanoid robot. In particular,
we provide all spectators with a mobile app, by means of which
they can select a specific color while listening to a piece of music (act).
Each color is mapped to an emotion, and the audience preferences are
then processed in order to select the next act to be played. This decision,
based on the overall emotion felt by the audience, is then communicated
by the robot through body gestures to the orchestra. Our first results
show that spectators enjoy such kind of interactive musical performance,
and are encouraging for further investigations
SLS Block 1-B and Exploration Upper Stage Navigation System Design
The SLS Block 1B vehicle is planned to extend NASA's heavy lift capability beyond the initial SLS Block 1 vehicle. The most noticeable change for this vehicle from SLS Block 1 is the swapping of the upper stage from the Interim Cryogenic Propulsion stage (ICPS), a modified Delta IV upper stage, to the more capable Exploration Upper Stage (EUS). As the vehicle evolves to provide greater lift capability and execute more demanding missions so must the SLS Integrated Navigation System to support those missions. The SLS Block 1 vehicle carries two independent navigation systems. The responsibility of the two systems is delineated between ascent and upper stage flight. The Block 1 navigation system is responsible for the phase of flight between the launch pad and insertion into Low-Earth Orbit (LEO). The upper stage system assumes the mission from LEO to payload separation. For the Block 1B vehicle, the two functions are combined into a single system intended to navigate from ground to payload insertion. Both are responsible for self-disposal once payload delivery is achieved. The evolution of the navigation hardware and algorithms from an inertial-only navigation system for Block 1 ascent flight to a tightly coupled GPS-aided inertial navigation system for Block 1-B is described. The Block 1 GN&C system has been designed to meet a LEO insertion target with a specified accuracy. The Block 1-B vehicle navigation system is designed to support the Block 1 LEO target accuracy as well as trans-lunar or trans-planetary injection accuracy. This is measured in terms of payload impact and stage disposal requirements. Additionally, the Block 1-B vehicle is designed to support human exploration and thus is designed to minimize the probability of Loss of Crew (LOC) through high-quality inertial instruments and Fault Detection, Isolation, and Recovery (FDIR) logic. The preliminary Block 1B integrated navigation system design is presented along with the challenges associated with meeting the design objectives. This paper also addresses the design considerations associated with the use of Block 1 and Commercial Off-the-Shelf (COTS) avionics for Block 1-B/EUS as part of an integrated vehicle suite for orbital operations
Multifragmentation threshold in ^{93}Nb+{nat}Mg collisions at 30 MeV/nucleon
We analyzed the on reaction at 30 MeV/nucleon in the aim
of disentangling binary sequential decay and multifragmentation decay close to
the energy threshold, i.e. MeV/nucleon. Using the backtracing
technique applied to the statistical models GEMINI and SMM we reconstruct
simulated charge, mass and excitation energy distributions and compare them to
the experimental ones. We show that data are better described by SMM than by
GEMINI in agreement with the fact that multifragmentation is responsible for
fragment production at excitation energies around 3 MeV/nucleon.Comment: 16 pages, 12 figures, 5 tables Soumis \`a Nuclear Physics
Dipolar degrees of freedom and Isospin equilibration processes in Heavy Ion collisions
Background: In heavy ion collision at the Fermi energies Isospin
equilibration processes occur- ring when nuclei with different charge/mass
asymmetries interacts have been investigated to get information on the
nucleon-nucleon Iso-vectorial effective interaction. Purpose: In this paper,
for the system 48Ca +27 Al at 40 MeV/nucleon, we investigate on this process by
means of an observable tightly linked to isospin equilibration processes and
sensitive in exclusive way to the dynamical stage of the collision. From the
comparison with dynamical model calculations we want also to obtain information
on the Iso-vectorial effective microscopic interaction. Method: The average
time derivative of the total dipole associated to the relative motion of all
emitted charged particles and fragments has been determined from the measured
charges and velocities by using the 4? multi-detector CHIMERA. The average has
been determined for semi- peripheral collisions and for different charges Zb of
the biggest produced fragment. Experimental evidences collected for the systems
27Al+48Ca and 27Al+40Ca at 40 MeV/nucleon used to support this novel method of
investigation are also discussed.Comment: Submitted for publication on Phys. Rev. C. 0n 24-oct-201
Mass and charge identification of fragments detected with the Chimera Silicon-CsI(Tl) telescopes
Mass and charge identification of charged products detected with
Silicon-CsI(Tl) telescopes of the Chimera apparatus is presented. An
identification function, based on the Bethe-Bloch formula, is used to fit
empirical correlation between Delta E and E ADC readings, in order to
determine, event by event, the atomic and mass numbers of the detected charged
reaction products prior to energy calibration.Comment: 24 pages, 7 .jpg figures, submitted to Nucl.Instr.
NEMO: A Project for a km Underwater Detector for Astrophysical Neutrinos in the Mediterranean Sea
The status of the project is described: the activity on long term
characterization of water optical and oceanographic parameters at the Capo
Passero site candidate for the Mediterranean km neutrino telescope; the
feasibility study; the physics performances and underwater technology for the
km; the activity on NEMO Phase 1, a technological demonstrator that has
been deployed at 2000 m depth 25 km offshore Catania; the realization of an
underwater infrastructure at 3500 m depth at the candidate site (NEMO Phase 2).Comment: Proceeding of ISCRA 2006, Erice 20-27 June 200
Measurement of the atmospheric muon flux with the NEMO Phase-1 detector
The NEMO Collaboration installed and operated an underwater detector
including prototypes of the critical elements of a possible underwater km3
neutrino telescope: a four-floor tower (called Mini-Tower) and a Junction Box.
The detector was developed to test some of the main systems of the km3
detector, including the data transmission, the power distribution, the timing
calibration and the acoustic positioning systems as well as to verify the
capabilities of a single tridimensional detection structure to reconstruct muon
tracks. We present results of the analysis of the data collected with the NEMO
Mini-Tower. The position of photomultiplier tubes (PMTs) is determined through
the acoustic position system. Signals detected with PMTs are used to
reconstruct the tracks of atmospheric muons. The angular distribution of
atmospheric muons was measured and results compared with Monte Carlo
simulations.Comment: Astrop. Phys., accepte
Projected Quasi-particle Perturbation theory
The BCS and/or HFB theories are extended by treating the effect of four
quasi-particle states perturbatively. The approach is tested on the pairing
hamiltonian, showing that it combines the advantage of standard perturbation
theory valid at low pairing strength and of non-perturbative approaches
breaking particle number valid at higher pairing strength. Including the
restoration of particle number, further improves the description of pairing
correlation. In the presented test, the agreement between the exact solution
and the combined perturbative + projection is almost perfect. The proposed
method scales friendly when the number of particles increases and provides a
simple alternative to other more complicated approaches
The Pierre Auger Observatory III: Other Astrophysical Observations
Astrophysical observations of ultra-high-energy cosmic rays with the Pierre
Auger ObservatoryComment: Contributions to the 32nd International Cosmic Ray Conference,
Beijing, China, August 201
Update on the correlation of the highest energy cosmic rays with nearby extragalactic matter
Data collected by the Pierre Auger Observatory through 31 August 2007 showed
evidence for anisotropy in the arrival directions of cosmic rays above the
Greisen-Zatsepin-Kuz'min energy threshold, \nobreak{eV}. The
anisotropy was measured by the fraction of arrival directions that are less
than from the position of an active galactic nucleus within 75 Mpc
(using the V\'eron-Cetty and V\'eron catalog). An updated
measurement of this fraction is reported here using the arrival directions of
cosmic rays recorded above the same energy threshold through 31 December 2009.
The number of arrival directions has increased from 27 to 69, allowing a more
precise measurement. The correlating fraction is , compared
with expected for isotropic cosmic rays. This is down from the early
estimate of . The enlarged set of arrival directions is
examined also in relation to other populations of nearby extragalactic objects:
galaxies in the 2 Microns All Sky Survey and active galactic nuclei detected in
hard X-rays by the Swift Burst Alert Telescope. A celestial region around the
position of the radiogalaxy Cen A has the largest excess of arrival directions
relative to isotropic expectations. The 2-point autocorrelation function is
shown for the enlarged set of arrival directions and compared to the isotropic
expectation.Comment: Accepted for publication in Astroparticle Physics on 31 August 201
- …
