409 research outputs found

    Quantum annealing and the Schr\"odinger-Langevin-Kostin equation

    Full text link
    We show, in the context of quantum combinatorial optimization, or quantum annealing, how the nonlinear Schr\"odinger-Langevin-Kostin equation can dynamically drive the system toward its ground state. We illustrate, moreover, how a frictional force of Kostin type can prevent the appearance of genuinely quantum problems such as Bloch oscillations and Anderson localization which would hinder an exhaustive search.Comment: 5 pages, 4 figures. To appear on Physical Review

    A solvable model of quantum random optimization problems

    Full text link
    We study the quantum version of a simplified model of optimization problems, where quantum fluctuations are introduced by a transverse field acting on the qubits. We find a complex low-energy spectrum of the quantum Hamiltonian, characterized by an abrupt condensation transition and a continuum of level crossings as a function of the transverse field. We expect this complex structure to have deep consequences on the behavior of quantum algorithms attempting to find solutions to these problems.Comment: 4 pages, 3 figures, accepted versio

    First-order transitions and the performance of quantum algorithms in random optimization problems

    Full text link
    We present a study of the phase diagram of a random optimization problem in presence of quantum fluctuations. Our main result is the characterization of the nature of the phase transition, which we find to be a first-order quantum phase transition. We provide evidence that the gap vanishes exponentially with the system size at the transition. This indicates that the Quantum Adiabatic Algorithm requires a time growing exponentially with system size to find the ground state of this problem.Comment: 4 pages, 4 figures; final version accepted on Phys.Rev.Let

    Grover's algorithm on a Feynman computer

    Get PDF
    We present an implementation of Grover's algorithm in the framework of Feynman's cursor model of a quantum computer. The cursor degrees of freedom act as a quantum clocking mechanism, and allow Grover's algorithm to be performed using a single, time-independent Hamiltonian. We examine issues of locality and resource usage in implementing such a Hamiltonian. In the familiar language of Heisenberg spin-spin coupling, the clocking mechanism appears as an excitation of a basically linear chain of spins, with occasional controlled jumps that allow for motion on a planar graph: in this sense our model implements the idea of "timing" a quantum algorithm using a continuous-time random walk. In this context we examine some consequences of the entanglement between the states of the input/output register and the states of the quantum clock

    Speed and entropy of an interacting continuous time quantum walk

    Get PDF
    We present some dynamic and entropic considerations about the evolution of a continuous time quantum walk implementing the clock of an autonomous machine. On a simple model, we study in quite explicit terms the Lindblad evolution of the clocked subsystem, relating the evolution of its entropy to the spreading of the wave packet of the clock. We explore possible ways of reducing the generation of entropy in the clocked subsystem, as it amounts to a deficit in the probability of finding the target state of the computation. We are thus lead to examine the benefits of abandoning some classical prejudice about how a clocking mechanism should operate.Comment: 25 pages, 14 figure

    Quantum Annealing and Analog Quantum Computation

    Full text link
    We review here the recent success in quantum annealing, i.e., optimization of the cost or energy functions of complex systems utilizing quantum fluctuations. The concept is introduced in successive steps through the studies of mapping of such computationally hard problems to the classical spin glass problems. The quantum spin glass problems arise with the introduction of quantum fluctuations, and the annealing behavior of the systems as these fluctuations are reduced slowly to zero. This provides a general framework for realizing analog quantum computation.Comment: 22 pages, 7 figs (color online); new References Added. Reviews of Modern Physics (in press

    The power of quantum systems on a line

    Full text link
    We study the computational strength of quantum particles (each of finite dimensionality) arranged on a line. First, we prove that it is possible to perform universal adiabatic quantum computation using a one-dimensional quantum system (with 9 states per particle). This might have practical implications for experimentalists interested in constructing an adiabatic quantum computer. Building on the same construction, but with some additional technical effort and 12 states per particle, we show that the problem of approximating the ground state energy of a system composed of a line of quantum particles is QMA-complete; QMA is a quantum analogue of NP. This is in striking contrast to the fact that the analogous classical problem, namely, one-dimensional MAX-2-SAT with nearest neighbor constraints, is in P. The proof of the QMA-completeness result requires an additional idea beyond the usual techniques in the area: Not all illegal configurations can be ruled out by local checks, so instead we rule out such illegal configurations because they would, in the future, evolve into a state which can be seen locally to be illegal. Our construction implies (assuming the quantum Church-Turing thesis and that quantum computers cannot efficiently solve QMA-complete problems) that there are one-dimensional systems which take an exponential time to relax to their ground states at any temperature, making them candidates for being one-dimensional spin glasses.Comment: 21 pages. v2 has numerous corrections and clarifications, and most importantly a new author, merged from arXiv:0705.4067. v3 is the published version, with additional clarifications, publisher's version available at http://www.springerlink.co

    Simultaneous Learning of Fuzzy Sets

    Get PDF
    We extend a procedure based on support vector clustering and devoted to inferring the membership function of a fuzzy set to the case of a universe of discourse over which several fuzzy sets are defined. The extended approach learns simultaneously these sets without requiring as previous knowledge either their number or labels approximating membership values. This data-driven approach is completed via expert knowledge incorporation in the form of predefined shapes for the membership functions. The procedure is successfully tested on a benchmark
    corecore