4,717 research outputs found

    Monte Carlo transition probabilities. II

    Get PDF
    The macroscopic quantizations of matter into macro-atoms and radiant and thermal energies into r- and k-energy packets initiated in Paper I is completed with the definition of transition probabilities governing energy flows to and from the thermal pool. The resulting Monte Carlo method is then applied to the problem of computing the hydrogen spectrum of a Type II supernova. This test problem is used to demonstrate the scheme's consistency as the number of energy packets N -> infinity, to investigate the accuracy of Monte Carlo estimators of radiative rates, and to illustrate the convergence characteristics of the geometry-independent, constrained Lambda-iteration method employed to obtain the NLTE stratifications of temperature and level populations. In addition, the method's potential, when combined with analytic ionization and excitation formulae, for obtaining useful approximate NLTE solutions is emphasized.Comment: 17 pages, 4 figure

    Monte Carlo techniques for time-dependent radiative transfer in 3-D supernovae

    Full text link
    Monte Carlo techniques based on indivisible energy packets are described for computing light curves and spectra for 3-D supernovae. The radiative transfer is time-dependent and includes all effects of O(v/c). Monte Carlo quantization is achieved by discretizing the initial distribution of 56Ni into radioactive pellets. Each pellet decays with the emission of a single energy packet comprising gamma-ray photons representing one line from either the 56Ni or the 56Co decay spectrum. Subsequently, these energy packets propagate through the homologously-expanding ejecta with appropriate changes in the nature of their contained energy as they undergo Compton scatterings and pure absorptions. The 3-D code is tested by applying it to a spherically-symmetric SN in which the transfer of optical radiation is treated with a grey absorption coefficient. This 1-D problem is separately solved using Castor's co-moving frame moment equations. Satisfactory agreement is obtained. The Monte Carlo code is a platform onto which more advanced treatments of the interactions of matter and radiation can be added. Some of these have already been developed and tested in previous papers and are summarized here.Comment: 14 pages, 5 figures. Accepted by A&

    Collapsars - Gamma-Ray Bursts and Explosions in "Failed Supernovae"

    Get PDF
    Using a two-dimensional hydrodynamics code (PROMETHEUS), we study the continued evolution of rotating massive helium stars whose iron core collapse does not produce a successful outgoing shock, but instead forms a black hole. We study the formation of a disk, the associated flow patterns, and the accretion rate for disk viscosity parameter, alpha ~ 0.001 and 0.1. For the standard 14 solar mass model the average accretion rate for 15 s is 0.07 solar masses per second and the total energy deposited along the rotational axes by neutrino annihilation is (1 - 14) x 10**51 erg, depending upon the evolution of the Kerr parameter and uncertain neutrino efficiencies. Simulated deposition of this energy in the polar regions results in strong relativistic outflow - jets beamed to about 1.5% of the sky. The jets remain highly focused, and are capable of penetrating the star in 5 - 10 s. After the jet breaks through the surface of the star, highly relativistic flow can commence. Because of the sensitivity of the mass ejection and jets to accretion rate, angular momentum, and disk viscosity, and the variation of observational consequences with viewing angle, a large range of outcomes is possible ranging from bright GRBs like GRB 971214 to faint GRB-supernovae like SN 1998bw. X-ray precursors are also possible as the jet first breaks out of the star. While only a small fraction of supernovae make GRBs, we predict that all GRBs longer than a few seconds will make supernovae similar to SN 1998bw. However, hard, energetic GRBs shorter than a few seconds will be difficult to make in this model.Comment: Latex, 66 pages including 27 figures (9 color), Submitted to The Astrophysical Journal, latex uses aaspp4.sty. Figures also available at http://www.ucolick.org/~andre

    Multidimensional Modeling of Type I X-ray Bursts. I. Two-Dimensional Convection Prior to the Outburst of a Pure Helium Accretor

    Full text link
    We present multidimensional simulations of the early convective phase preceding ignition in a Type I X-ray burst using the low Mach number hydrodynamics code, MAESTRO. A low Mach number approach is necessary in order to perform long-time integration required to study such phenomena. Using MAESTRO, we are able to capture the expansion of the atmosphere due to large-scale heating while capturing local compressibility effects such as those due to reactions and thermal diffusion. We also discuss the preparation of one-dimensional initial models and the subsequent mapping into our multidimensional framework. Our method of initial model generation differs from that used in previous multidimensional studies, which evolved a system through multiple bursts in one dimension before mapping onto a multidimensional grid. In our multidimensional simulations, we find that the resolution necessary to properly resolve the burning layer is an order of magnitude greater than that used in the earlier studies mentioned above. We characterize the convective patterns that form and discuss their resulting influence on the state of the convective region, which is important in modeling the outburst itself.Comment: 47 pages including 18 figures; submitted to ApJ; A version with higher resolution figures can be found at http://astro.sunysb.edu/cmalone/research/pure_he4_xrb/ms.pd

    Modeling core collapse supernovae in 2 and 3 dimensions with spectral neutrino transport

    Full text link
    The overwhelming evidence that the core collapse supernova mechanism is inherently multidimensional, the complexity of the physical processes involved, and the increasing evidence from simulations that the explosion is marginal presents great computational challenges for the realistic modeling of this event, particularly in 3 spatial dimensions. We have developed a code which is scalable to computations in 3 dimensions which couples PPM Lagrangian with remap hydrodynamics [1], multigroup, flux-limited diffusion neutrino transport [2], with many improvements), and a nuclear network [3]. The neutrino transport is performed in a ray-by-ray plus approximation wherein all the lateral effects of neutrinos are included (e.g., pressure, velocity corrections, advection) except the transport. A moving radial grid option permits the evolution to be carried out from initial core collapse with only modest demands on the number of radial zones. The inner part of the core is evolved after collapse along with the rest of the core and mantle by subcycling the lateral evolution near the center as demanded by the small Courant times. We present results of 2-D simulations of a symmetric and an asymmetric collapse of both a 15 and an 11 M progenitor. In each of these simulations we have discovered that once the oxygen rich material reaches the shock there is a synergistic interplay between the reduced ram pressure, the energy released by the burning of the shock heated oxygen rich material, and the neutrino energy deposition which leads to a revival of the shock and an explosion.Comment: 10 pages, 3 figure

    A dynamical model of surrogate reactions

    Full text link
    A new dynamical model is developed to describe the whole process of surrogate reactions; transfer of several nucleons at an initial stage, thermal equilibration of residues leading to washing out of shell effects and decay of populated compound nuclei are treated in a unified framework. Multi-dimensional Langevin equations are employed to describe time-evolution of collective coordinates with a time-dependent potential energy surface corresponding to different stages of surrogate reactions. The new model is capable of calculating spin distributions of the compound nuclei, one of the most important quantity in the surrogate technique. Furthermore, various observables of surrogate reactions can be calculated, e.g., energy and angular distribution of ejectile, and mass distributions of fission fragments. These features are important to assess validity of the proposed model itself, to understand mechanisms of the surrogate reactions and to determine unknown parameters of the model. It is found that spin distributions of compound nuclei produced in 18^{18}O+238^{238}U 16\rightarrow ^{16}O+240^{240*}U and 18^{18}O+236^{236}U 16\rightarrow ^{16}O+238^{238*}U reactions are equivalent and much less than 10\hbar, therefore satisfy conditions proposed by Chiba and Iwamoto (PRC 81, 044604(2010)) if they are used as a pair in the surrogate ratio method.Comment: 17 pages, 5 figure

    Lower limits on the Hubble Constant from models of Type Ia Supernovae

    Full text link
    By coupling observations of type Ia supernovae with results obtained from the best available numerical models we constrain the Hubble constant, independently of any external calibrators. We find an absolute lower limit of Ho > 50 km/s/Mpc. In addition, we construct a Hubble diagram with UVOIR light curves of 12 type Ia supernovae located in the Hubble flow, and when adopting the most likely values (obtained from 1-D and 3-D deflagration simulations) of the amount of (56)Ni produced in a typical event, we find values of Ho \geq 66±\pm8 and \geq 78±\pm9 km/s/Mpc, respectively. Our result may be difficult to reconcile with recent discussions in the literature as it seems that an Einstein-de Sitter universe requires Ho \simeq 46 km/s/Mpc in order to fit the temperature power spectrum of the cosmic microwave background and maintain the age constraints of the oldest stars.Comment: 11 pages, 3 figures; Accepted for publication in A&

    Stellar Hydrodynamics in Radiative Regions

    Full text link
    We present an analysis of the response of a radiative region to waves generated by a convective region of the star; this wave treatment of the classical problem of ``overshooting'' gives extra mixing relative to the treatment traditionally used in stellar evolutionary codes. The interface between convectively stable and unstable regions is dynamic and nonspherical, so that the nonturbulent material is driven into motion, even in the absence of ``penetrative overshoot.'' These motions may be described by the theory of nonspherical stellar pulsations, and are related to motion measured by helioseismology. Multi-dimensional numerical simulations of convective flow show puzzling features which we explain by this simplified physical model. Gravity waves generated at the interface are dissipated, resulting in slow circulation and mixing seen outside the formal convection zone. The approach may be extended to deal with rotation and composition gradients. Tests of this description in the stellar evolution code TYCHO produce carbon stars on the asymptotic giant branch (AGB), an isochrone age for the Hyades and three young clusters with lithium depletion ages from brown dwarfs, and lithium and beryllium depletion consistent with observations of the Hyades and Pleiades, all without tuning parameters. The insight into the different contributions of rotational and hydrodynamic mixing processes could have important implications for realistic simulation of supernovae and other questions in stellar evolution.Comment: 27 pages, 5 figures, accepted to the Astrophysical Journa

    Wind-accretion disks in wide binaries, second generation protoplanetary disks and accretion onto white dwarfs

    Full text link
    Mass transfer from an evolved donor star to its binary companion is a standard feature of stellar evolution in binaries. In wide binaries, the companion star captures some of the mass ejected in a wind by the primary star. The captured material forms an accretion disk. Here, we study the evolution of wind-accretion disks, using a numerical approach which allows us to follow the long term evolution. For a broad range of initial conditions, we derive the radial density and temperature profiles of the disk. In most cases, wind-accretion leads to long-lived stable disks over the lifetime of the AGB donor star. The disks have masses of a few times 10^{-5}-10^{-3} M_sun, with surface density and temperature profiles that follow broken power-laws. The total mass in the disk scales approximately linearly with the viscosity parameter used. Roughly 50% to 80% of the mass falling into the disk accretes onto the central star; the rest flows out through the outer edge of the disk into the stellar wind of the primary. For systems with large accretion rates, the secondary accretes as much as 0.1 M_sun. When the secondary is a white dwarf, accretion naturally leads to nova and supernova eruptions. For all types of secondary star, the surface density and temperature profiles of massive disks resemble structures observed in protoplanetary disks, suggesting that coordinated observational programs might improve our understanding of uncertain disk physics.Comment: ApJ, in press. Some discussion on thermal instabilities, and different viscosities adde

    Nickel-Rich Outflows Produced by the Accretion-Induced Collapse of White Dwarfs: Lightcurves and Spectra

    Full text link
    The accretion-induced collapse (AIC) of a white dwarf to form a neutron star can leave behind a rotationally supported disk with mass of up to ~ 0.1 M_sun. The disk is initially composed of free nucleons but as it accretes and spreads to larger radii, the free nucleons recombine to form helium, releasing sufficient energy to unbind the remaining disk. Most of the ejected mass fuses to form Ni56 and other iron group elements. We present spherically symmetric radiative transfer calculations of the transient powered by the radioactive heating of this ejecta. For an ejecta mass of 1e-2 M_sun (3e-3 M_sun), the lightcurve peaks after <~ 1 day with a peak bolometric luminosity ~ 2e41 erg/s (~ 5e40 erg/s), i.e., a "kilonova"; the decay time is ~ 4 (2) days. Overall, the spectra redden with time reaching U-V ~ 4 after ~ 1 day; the optical colors (B-V) are, however, somewhat blue. Near the peak in the lightcurve, the spectra are dominated by Doppler broadened Nickel features, with no distinct spectral lines present. At ~ 3-5 days, strong Calcium lines are present in the infrared, although the Calcium mass fraction is only ~ 1e-4.5. If rotationally supported disks are a common byproduct of AIC, current and upcoming transient surveys such as the Palomar Transient Factory should detect a few AIC per year for an AIC rate of ~ 1e-2 of the Type Ia rate. We discuss ways of distinguishing AIC from other rapid, faint transients, including .Ia's and the ejecta from binary neutron star mergers.Comment: 9 pages, 4 figures, 1 table, now accepted to MNRA
    corecore