492 research outputs found

    Fedosov Quantization of Lagrange-Finsler and Hamilton-Cartan Spaces and Einstein Gravity Lifts on (Co) Tangent Bundles

    Full text link
    We provide a method of converting Lagrange and Finsler spaces and their Legendre transforms to Hamilton and Cartan spaces into almost Kaehler structures on tangent and cotangent bundles. In particular cases, the Hamilton spaces contain nonholonomic lifts of (pseudo) Riemannian / Einstein metrics on effective phase spaces. This allows us to define the corresponding Fedosov operators and develop deformation quantization schemes for nonlinear mechanical and gravity models on Lagrange- and Hamilton-Fedosov manifolds.Comment: latex2e, 11pt, 35 pages, v3, accepted to J. Math. Phys. (2009

    Axially Symmetric Divertor Experiment (ASDEX) Upgrade Team (vol 81, 033507, 2010)

    Get PDF

    The mucous cyst, a rare and delayed complication after rhinoplasty

    Get PDF
    Rhinoplasty is frequently performed worldwide, and patients and surgeons both expect good cosmetic results without any deformity recurrence. We report a rare case of mucous cyst occurred after post-traumatic rhinoseptoplasty. Observation A 27-year old woman presented a median mass of the nose root 7 years after prior rhinoseptoplasty. Investigations showed a subcutaneous lesion of 10.5 × 24.5 mm. The surgery consisted on an external rhinoplasty allowing cyst removal, bilateral osteotomies and reconstruction of the nasal dorsum by deep temporal fascia graft. Histological examination confirmed the diagnosis of begnin mucous cyst. No recurrence was observed at 1-year follow-up. Discussion Mucous cyst post rhinoplasty is rare and is probably due to accidental mucosal material implantation into the subcutaneous plane during rhinoplasty. This complication can be avoided by adequate infiltration and hydrodissection, careful dissection, and avoidance of unnecessary trauma during osteotomies

    On the mechanisms governing gas penetration into a tokamak plasma during a massive gas injection

    Get PDF
    A new 1D radial fluid code, IMAGINE, is used to simulate the penetration of gas into a tokamak plasma during a massive gas injection (MGI). The main result is that the gas is in general strongly braked as it reaches the plasma, due to mechanisms related to charge exchange and (to a smaller extent) recombination. As a result, only a fraction of the gas penetrates into the plasma. Also, a shock wave is created in the gas which propagates away from the plasma, braking and compressing the incoming gas. Simulation results are quantitatively consistent, at least in terms of orders of magnitude, with experimental data for a D 2 MGI into a JET Ohmic plasma. Simulations of MGI into the background plasma surrounding a runaway electron beam show that if the background electron density is too high, the gas may not penetrate, suggesting a possible explanation for the recent results of Reux et al in JET (2015 Nucl. Fusion 55 093013)

    Velocity-space sensitivity of the time-of-flight neutron spectrometer at JET

    Get PDF
    The velocity-space sensitivities of fast-ion diagnostics are often described by so-called weight functions. Recently, we formulated weight functions showing the velocity-space sensitivity of the often dominant beam-target part of neutron energy spectra. These weight functions for neutron emission spectrometry (NES) are independent of the particular NES diagnostic. Here we apply these NES weight functions to the time-of-flight spectrometer TOFOR at JET. By taking the instrumental response function of TOFOR into account, we calculate time-of-flight NES weight functions that enable us to directly determine the velocity-space sensitivity of a given part of a measured time-of-flight spectrum from TOFOR

    Herpesvirus Glycoproteins Undergo Multiple Antigenic Changes before Membrane Fusion

    Get PDF
    Herpesvirus entry is a complicated process involving multiple virion glycoproteins and culminating in membrane fusion. Glycoprotein conformation changes are likely to play key roles. Studies of recombinant glycoproteins have revealed some structural features of the virion fusion machinery. However, how the virion glycoproteins change during infection remains unclear. Here using conformation-specific monoclonal antibodies we show in situ that each component of the Murid Herpesvirus-4 (MuHV-4) entry machinery—gB, gH/gL and gp150—changes in antigenicity before tegument protein release begins. Further changes then occurred upon actual membrane fusion. Thus virions revealed their final fusogenic form only in late endosomes. The substantial antigenic differences between this form and that of extracellular virions suggested that antibodies have only a limited opportunity to block virion membrane fusion

    The Protein Network Surrounding the Human Telomere Repeat Binding Factors TRF1, TRF2, and POT1

    Get PDF
    Telomere integrity (including telomere length and capping) is critical in overall genomic stability. Telomere repeat binding factors and their associated proteins play vital roles in telomere length regulation and end protection. In this study, we explore the protein network surrounding telomere repeat binding factors, TRF1, TRF2, and POT1 using dual-tag affinity purification in combination with multidimensional protein identification technology liquid chromatography - tandem mass spectrometry (MudPIT LC-MS/MS). After control subtraction and data filtering, we found that TRF2 and POT1 co-purified all six members of the telomere protein complex, while TRF1 identified five of six components at frequencies that lend evidence towards the currently accepted telomere architecture. Many of the known TRF1 or TRF2 interacting proteins were also identified. Moreover, putative associating partners identified for each of the three core components fell into functional categories such as DNA damage repair, ubiquitination, chromosome cohesion, chromatin modification/remodeling, DNA replication, cell cycle and transcription regulation, nucleotide metabolism, RNA processing, and nuclear transport. These putative protein-protein associations may participate in different biological processes at telomeres or, intriguingly, outside telomeres

    Characterization of Oxidative Guanine Damage and Repair in Mammalian Telomeres

    Get PDF
    8-oxo-7,8-dihydroguanine (8-oxoG) and 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyG) are among the most common oxidative DNA lesions and are substrates for 8-oxoguanine DNA glycosylase (OGG1)–initiated DNA base excision repair (BER). Mammalian telomeres consist of triple guanine repeats and are subject to oxidative guanine damage. Here, we investigated the impact of oxidative guanine damage and its repair by OGG1 on telomere integrity in mice. The mouse cells were analyzed for telomere integrity by telomere quantitative fluorescence in situ hybridization (telomere–FISH), by chromosome orientation–FISH (CO–FISH), and by indirect immunofluorescence in combination with telomere–FISH and for oxidative base lesions by Fpg-incision/Southern blot assay. In comparison to the wild type, telomere lengthening was observed in Ogg1 null (Ogg1−/−) mouse tissues and primary embryonic fibroblasts (MEFs) cultivated in hypoxia condition (3% oxygen), whereas telomere shortening was detected in Ogg1−/− mouse hematopoietic cells and primary MEFs cultivated in normoxia condition (20% oxygen) or in the presence of an oxidant. In addition, telomere length abnormalities were accompanied by altered telomere sister chromatid exchanges, increased telomere single- and double-strand breaks, and preferential telomere lagging- or G-strand losses in Ogg1−/− mouse cells. Oxidative guanine lesions were increased in telomeres in Ogg1−/− mice with aging and primary MEFs cultivated in 20% oxygen. Furthermore, oxidative guanine lesions persisted at high level in Ogg1−/− MEFs after acute exposure to hydrogen peroxide, while they rapidly returned to basal level in wild-type MEFs. These findings indicate that oxidative guanine damage can arise in telomeres where it affects length homeostasis, recombination, DNA replication, and DNA breakage repair. Our studies demonstrate that BER pathway is required in repairing oxidative guanine damage in telomeres and maintaining telomere integrity in mammals
    corecore