6,328 research outputs found
Studies of highly-boosted top quarks near the TeV scale using jet masses at the LHC
Studies of highly-boosted top quarks produced inclusively in pp collisions at
14 TeV are discussed. The hadronic decays of boosted top quarks was studied in
a data-driven approach by analysing shapes of jet-mass distributions. Using
Monte Carlo models after a fast detector simulation, it is shown that inclusive
production of boosted top quarks can be observed if it has a cross section at
least twice larger than the prediction from the approximate
next-to-next-to-leading-order (aNNLO) calculation for the ttbar process. The
ttbar process with the nominal aNNLO strength can be measured using the masses
of jets after a b-tagging.Comment: 11 pages, 5 figure
Zipf Law for Brazilian Cities
This work studies the Zipf Law for cities in Brazil. Data from censuses of
1970, 1980, 1991 and 2000 were used to select a sample containing only cities
with 30,000 inhabitants or more. The results show that the population
distribution in Brazilian cities does follow a power law similar to the ones
found in other countries. Estimates of the power law exponent were found to be
2.22 +/- 0.34 for the 1970 and 1980 censuses, and 2.26 +/- 0.11 for censuses of
1991 and 2000. More accurate results were obtained with the maximum likelihood
estimator, showing an exponent equal to 2.41 for 1970 and 2.36 for the other
three years.Comment: 12 pages, 6 figures, 3 tables, Elsevier LaTeX, accepted for
publication in "Physica A". Correction of minor mistyping (eq. 8
Propagation front of correlations in an interacting Bose gas
We analyze the quench dynamics of a one-dimensional bosonic Mott insulator
and focus on the time evolution of density correlations. For these we identify
a pronounced propagation front, the velocity of which, once correctly
extrapolated at large distances, can serve as a quantitative characteristic of
the many-body Hamiltonian. In particular, the velocity allows the weakly
interacting regime, which is qualitatively well described by free bosons, to be
distinguished from the strongly interacting one, in which pairs of distinct
quasiparticles dominate the dynamics. In order to describe the latter case
analytically, we introduce a general approximation to solve the Bose-Hubbard
Hamiltonian based on the Jordan-Wigner fermionization of auxiliary particles.
This approach can also be used to determine the ground-state properties. As a
complement to the fermionization approach, we derive explicitly the
time-dependent many-body state in the noninteracting limit and compare our
results to numerical simulations in the whole range of interactions of the
Bose-Hubbard model.Comment: 16 pages, 7 figure
Probing -Spin Correlations in Optical Lattices
We propose a technique to measure multi-spin correlation functions of
arbitrary range as determined by the ground states of spinful cold atoms in
optical lattices. We show that an observation of the atomic version of the
Stokes parameters, using focused lasers and microwave pulsing, can be related
to -spin correlators. We discuss the possibility of detecting not only
ground state static spin correlations, but also time-dependent spin wave
dynamics as a demonstrative example using our proposed technique.Comment: 7 pages, 4 figure
Fine Structure Discussion of Parity-Nonconserving Neutron Scattering at Epithermal Energies
The large magnitude and the sign correlation effect in the parity
non-conserving resonant scattering of epithermal neutrons from Th is
discussed in terms of a non-collective local doorway model. General
conclusions are drawn as to the probability of finding large parity violation
effects in other regions of the periodic table.Comment: 6 pages, Tex. CTP# 2296, to appear in Z. Phys.
Towards a strong-coupling theory of QCD at finite density
We apply strong-coupling perturbation theory to the QCD lattice Hamiltonian.
We begin with naive, nearest-neighbor fermions and subsequently break the
doubling symmetry with next-nearest-neighbor terms. The effective Hamiltonian
is that of an antiferromagnet with an added kinetic term for baryonic
"impurities," reminiscent of the t-J model of high-T_c superconductivity. As a
first step, we fix the locations of the baryons and make them static. Following
analyses of the t-J model, we apply large-N methods to obtain a phase diagram
in the (N_c,N_f) plane at zero temperature and baryon density. Next we study a
simplified U(3) toy model, in which we add baryons to the vacuum. We use a
coherent state formalism to write a path integral which we analyze with mean
field theory, obtaining a phase diagram in the (n_B,T) plane.Comment: Lattice2002(nonzerot) - Parallel talk and poster presented at Lattice
2002, Cambridge, MA, USA, June 2002. 6 pages, 6 EPS figure
Tunneling-driven breakdown of the 331 state and the emergent Pfaffian and composite Fermi liquid phases
We examine the possibility of creating the Moore-Read Pfaffian in the lowest
Landau level when the multicomponent Halperin 331 state (believed to describe
quantum Hall bilayers and wide quantum wells at the filling factor )
is destroyed by the increase of tunneling. Using exact diagonalization of the
bilayer Hamiltonian with short-range and long-range (Coulomb) interactions in
spherical and periodic rectangular geometries, we establish that tunneling is a
perturbation that drives the 331 state into a compressible composite Fermi
liquid, with the possibility for an intermediate critical state that possesses
some properties of the Moore-Read Pfaffian. These results are interpreted in
the two-component BCS model for Cauchy pairing with a tunneling constraint. We
comment on the conditions to be imposed on a system with fluctuating density in
order to achieve the stable Pfaffian phase.Comment: 10 pages, 7 figure
- …
