1,316 research outputs found

    The SOA/VOC/NOx system: an explicit model of secondary organic aerosol formation

    Get PDF
    International audienceOur current understanding of secondary organic aerosol (SOA) formation is limited by our knowledge of gaseous secondary organics involved in gas/particle partitioning. The objective of this study is to explore (i) the potential for products of multiple oxidation steps contributing to SOA, and (ii) the evolution of the SOA/VOC/NOx system. We developed an explicit model based on the coupling of detailed gas-phase oxidation schemes with a thermodynamic condensation module. Such a model allows prediction of SOA mass and speciation on the basis of first principles. The SOA/VOC/NOx system is studied for the oxidation of 1-octene under atmospherically relevant concentrations. In this study, gaseous oxidation of octene is simulated to lead to SOA formation. Contributors to SOA formation are shown to be formed via multiple oxidation steps of the parent hydrocarbon. The behaviour of the SOA/VOC/NOx system simulated using the explicit model agrees with general tendencies observed during laboratory chamber experiments. This explicit modelling of SOA formation appears as a useful exploratory tool to (i) support interpretations of SOA formation observed in laboratory chamber experiments, (ii) give some insights on SOA formation under atmospherically relevant conditions and (iii) investigate implications for the regional/global lifetimes of the SOA

    Modeling SOA formation from the oxidation of intermediate volatility <i>n</i>-alkanes

    Get PDF
    The chemical mechanism leading to SOA formation and ageing is expected to be a multigenerational process, i.e. a successive formation of organic compounds with higher oxidation degree and lower vapor pressure. This process is here investigated with the explicit oxidation model GECKO-A (Generator of Explicit Chemistry and Kinetics of Organics in the Atmosphere). Gas phase oxidation schemes are generated for the C<sub>8</sub>–C<sub>24</sub> series of <i>n</i>-alkanes. Simulations are conducted to explore the time evolution of organic compounds and the behavior of secondary organic aerosol (SOA) formation for various preexisting organic aerosol concentration (<i>C</i><sub>OA</sub>). As expected, simulation results show that (i) SOA yield increases with the carbon chain length of the parent hydrocarbon, (ii) SOA yield decreases with decreasing <i>C</i><sub>OA</sub>, (iii) SOA production rates increase with increasing <i>C</i><sub>OA</sub> and (iv) the number of oxidation steps (i.e. generations) needed to describe SOA formation and evolution grows when <i>C</i><sub>OA</sub> decreases. The simulated oxidative trajectories are examined in a two dimensional space defined by the mean carbon oxidation state and the volatility. Most SOA contributors are not oxidized enough to be categorized as highly oxygenated organic aerosols (OOA) but reduced enough to be categorized as hydrocarbon like organic aerosols (HOA), suggesting that OOA may underestimate SOA. Results show that the model is unable to produce highly oxygenated aerosols (OOA) with large yields. The limitations of the model are discussed

    SCIAMACHY formaldehyde observations: constraint for isoprene emission estimates over Europe?

    Get PDF
    Formaldehyde (HCHO) is an important intermediate compound in the degradation of volatile organic compounds (VOCs) in the troposphere. Sources of HCHO are largely dominated by its secondary production from VOC oxidation, methane and isoprene being the main precursors in unpolluted areas. As a result of the moderate lifetime of HCHO, its spatial distribution is determined by reactive hydrocarbon emissions. We focus here on Europe and investigate the influence of the different emissions on HCHO tropospheric columns with the CHIMERE chemical transport model in order to interpret the comparisons between SCIAMACHY and simulated HCHO columns. Europe was never specifically studied before for these purposes using satellite observations. The bias between measurements and model is less than 20% on average. The differences are discussed according to the errors on the model and the observations and remaining discrepancies are attributed to a misrepresentation of biogenic emissions. This study requires the characterisation of: (1) the model errors and performances concerning formaldehyde. The errors on the HCHO columns, mainly related to chemistry and mixed emission types, are evaluated to 2&amp;times;10&lt;sup&gt;15&lt;/sup&gt; molecule/cm&lt;sup&gt;2&lt;/sup&gt; and the model performances evaluated using surface measurements are satisfactory (~13%); (2) the observation errors that define the needs in spatial and temporal averaging for meaningful comparisons. Using SCIAMACHY observations as constraint for biogenic isoprene emissions in an inverse modelling scheme reduces their uncertainties by about a factor of two in region of intense emissions. The retrieved correction factors for the isoprene emissions range from a factor of 0.15 (North Africa) to a factor of 2 (Poland, the United Kingdom) depending on the regions

    Explicit modelling of SOA formation from α-pinene photooxidation: sensitivity to vapour pressure estimation

    Get PDF
    The sensitivity of the formation of secondary organic aerosol (SOA) to the estimated vapour pressures of the condensable oxidation products is explored. A highly detailed reaction scheme was generated for α-pinene photooxidation using the Generator for Explicit Chemistry and Kinetics of Organics in the Atmosphere (GECKO-A). Vapour pressures (P^(vap)) were estimated with three commonly used structure activity relationships. The values of P^(vap) were compared for the set of secondary species generated by GECKO-A to describe α-pinene oxidation. Discrepancies in the predicted vapour pressures were found to increase with the number of functional groups borne by the species. For semi-volatile organic compounds (i.e. organic species of interest for SOA formation), differences in the predicted Pvap range between a factor of 5 to 200 on average. The simulated SOA concentrations were compared to SOA observations in the Caltech chamber during three experiments performed under a range of NO_x conditions. While the model captures the qualitative features of SOA formation for the chamber experiments, SOA concentrations are systematically overestimated. For the conditions simulated, the modelled SOA speciation appears to be rather insensitive to the P^vap estimation method

    The formation of the ocean’s anthropogenic carbon reservoir

    Get PDF
    The shallow overturning circulation of the oceans transports heat from the tropics to the mid-latitudes. This overturning also influences the uptake and storage of anthropogenic carbon (Cant). We demonstrate this by quantifying the relative importance of ocean thermodynamics, circulation and biogeochemistry in a global biochemistry and circulation model. Almost 2/3 of the Cant ocean uptake enters via gas exchange in waters that are lighter than the base of the ventilated thermocline. However, almost 2/3 of the excess Cant is stored below the thermocline. Our analysis shows that subtropical waters are a dominant component in the formation of subpolar waters and that these water masses essentially form a common Cant reservoir. This new method developed and presented here is intrinsically Lagrangian, as it by construction only considers the velocity or transport of waters across isopycnals. More generally, our approach provides an integral framework for linking ocean thermodynamics with biogeochemistry

    Water masses as a unifying framework for understanding the Southern Ocean Carbon Cycle

    Get PDF
    International audienceThe scientific motivation for this study is to understand the processes in the ocean interior controlling carbon transfer across 30° S. To address this, we have developed a unified framework for understanding the interplay between physical drivers such as buoyancy fluxes and ocean mixing, and carbon-specific processes such as biology, gas exchange and carbon mixing. Given the importance of density in determining the ocean interior structure and circulation, the framework is one that is organized by density and water masses, and it makes combined use of Eulerian and Lagrangian diagnostics. This is achieved through application to a global ice-ocean circulation model and an ocean biogeochemistry model, with both components being part of the widely-used IPSL coupled ocean/atmosphere/carbon cycle model. Our main new result is the dominance of the overturning circulation (identified by water masses) in setting the vertical distribution of carbon transport from the Southern Ocean towards the global ocean. A net contrast emerges between the role of Subantarctic Mode Water (SAMW), associated with large northward transport and ingassing, and Antarctic Intermediate Water (AAIW), associated with a much smaller export and outgassing. The differences in their export rate reflects differences in their water mass formation processes. For SAMW, two-thirds of the surface waters are provided as a result of the densification of thermocline water (TW), and upon densification this water carries with it a substantial diapycnal flux of dissolved inorganic carbon (DIC). For AAIW, principal formatin processes include buoyancy forcing and mixing, with these serving to lighten CDW. An additional important formation pathway of AAIW is through the effect of interior processing (mixing, including cabelling) that serve to densify SAMW. A quantitative evaluation of the contribution of mixing, biology and gas exchange to the DIC evolution per water mass reveals that mixing and, secondarily, gas exchange, effectively nearly balance biology on annual scales (while the latter process can be dominant at seasonal scale). The distribution of DIC in the northward flowing water at 30° S is thus primarily set by the DIC values of the water masses that are involved in the formation processes

    The pre-launch Planck Sky Model: a model of sky emission at submillimetre to centimetre wavelengths

    Get PDF
    We present the Planck Sky Model (PSM), a parametric model for the generation of all-sky, few arcminute resolution maps of sky emission at submillimetre to centimetre wavelengths, in both intensity and polarisation. Several options are implemented to model the cosmic microwave background, Galactic diffuse emission (synchrotron, free-free, thermal and spinning dust, CO lines), Galactic H-II regions, extragalactic radio sources, dusty galaxies, and thermal and kinetic Sunyaev-Zeldovich signals from clusters of galaxies. Each component is simulated by means of educated interpolations/extrapolations of data sets available at the time of the launch of the Planck mission, complemented by state-of-the-art models of the emission. Distinctive features of the simulations are: spatially varying spectral properties of synchrotron and dust; different spectral parameters for each point source; modeling of the clustering properties of extragalactic sources and of the power spectrum of fluctuations in the cosmic infrared background. The PSM enables the production of random realizations of the sky emission, constrained to match observational data within their uncertainties, and is implemented in a software package that is regularly updated with incoming information from observations. The model is expected to serve as a useful tool for optimizing planned microwave and sub-millimetre surveys and to test data processing and analysis pipelines. It is, in particular, used for the development and validation of data analysis pipelines within the planck collaboration. A version of the software that can be used for simulating the observations for a variety of experiments is made available on a dedicated website.Comment: 35 pages, 31 figure

    Testing Gaussianity on Archeops Data

    Full text link
    A Gaussianity analysis using a goodness-of-fit test and the Minkowski functionals on the sphere has been performed to study the measured Archeops Cosmic Microwave Background (CMB) temperature anisotropy data for a 143 GHz Archeops bolometer. We consider large angular scales, greater than 1.8 degrees, and a large fraction of the North Galactic hemisphere, around 16%, with a galactic latitude b > 15 degrees. The considered goodness-of-fit test, first proposed by Rayner & Best (1989), has been applied to the data after a signal-to-noise decomposition. The three Minkowski functionals on the sphere have been used to construct a chi-square statistic using different thresholds. The first method has been calibrated using simulations of Archeops data containing the CMB signal and instrumental noise in order to check its asymptotic convergence. Two kind of maps produced with two different map-making techniques (coaddition and Mirage) have been analysed. Archeops maps for both Mirage and coaddition map-making, have been found to be compatible with Gaussianity. From these results we can exclude a dust and atmospheric contamination larger than 7.8% (90% CL). Also the non-linear coupling parameter f_{nl} can be constrained to be -800 < f_{nl} < 1100 at the 95% CL and on angular scales of 1.8 degrees. For comparison, the same method has been applied to data from the NASA WMAP satellite in the same region of sky. The 1-year and 3-year releases have been used. Results are compatible with those obtained with Archeops, implying in particular an upper limit for f_{nl} on degree angular scales.Comment: A&A accepted. The limits on the contamination and the fnl parameter have been improve

    Study of the unknown HONO daytime source at a European suburban site during the MEGAPOLI summer and winter field campaigns

    Get PDF
    International audienceNitrous acid measurements were carried out during the MEGAPOLI summer and winter field campaigns at SIRTA observatory in Paris surroundings. Highly variable HONO levels were observed during the campaigns, ranging from 10 ppt to 500 ppt in summer and from 10 ppt to 1.7 ppb in winter. Significant HONO mixing ratios have also been measured during daytime hours, comprised between some tenth of ppt and 200 ppt for the summer campaign and between few ppt and 1 ppb for the winter campaign. Ancillary measurements, such as NOx , O3 , photolysis frequencies, meteorological parameters (pressure, temperature, relative humidity , wind speed and wind direction), black carbon concentration , total aerosol surface area, boundary layer height and soil moisture, were conducted during both campaigns. In addition, for the summer period, OH radical measurements were made with a CIMS (Chemical Ionisation Mass Spectrometer). This large dataset has been used to investigate the HONO budget in a suburban environment. To do so, calculations of HONO concentrations using PhotoStationary State (PSS) approach have been performed, for daytime hours. The comparison of these calculations with measured HONO concentrations revealed an underestimation of the calculations making evident a missing source term for both campaigns. This unknown HONO source exhibits a bell-shaped like average diurnal profile with a maximum around noon of approximately 0.7 ppb h−1 and 0.25 ppb h−1 , during summer and winter respectively. This source is the main HONO source during daytime hours for both campaigns. In both cases, this source shows a slight positive correlation with J (NO2) and the product between J (NO2) and soil moisture. This original approach had, thus, indicated that this missing source is photolytic and might be heterogeneous occurring at ground surface and involving water content available on the ground. Published by Copernicus Publications on behalf of the European Geosciences Union. 2806 V. Michoud et al.: Study of the unknown HONO daytime sourc
    corecore